Quantile hedging call option ina diffusion (B, S)-market in case of dividends payment on a risk active.
Risk and risk free assets, circulating in a financial market, have current prices{( ( 2 )) }St=S0 exp − 2 t+Wt and Bt =B0 exp{rt} , t[0,T], where ( ) t t 0 W W ≥ = is a standardWiener process, R =(−,+), > 0, r > 0, S0 > 0, B0 > 0 . Capital value of investoris Xt=tBt+tSt, where t=(t, t) is an investment portfolio consisted of two Ft -measurable process. For holding of assets dividends are paid at the rate dDt= tStdt , > 0 .The payoff function is fT (ST K) max(0,ST K) = − + = − , its payment liability is fulfillied withprobability P(A) =1− , 0 < <1 .Theorem. Let( ) ( )xx ydy− = ϕ ,( ) 1 exp 22 2y y⎧ ⎫ϕ = ⎨− ⎬ ⎩ ⎭,( ) ( ( 2 ))0ln 2 ( )( , )ttKS r T ty T t ST t− − − −− =−,1 ( ) 2 ( )( ) A = ⎛⎜ ⎛⎜bT−t − −r+ T− t ⎞⎟ T − t ⎞⎟ + ⎛⎜ ⎛⎜ −bT−t + −r+ T − t ⎞⎟ T − t ⎞⎟⎝ ⎝ ⎠ ⎠ ⎝ ⎝ ⎠ ⎠P ,where Ф(x) is Laplace's function, y0(T, S0), 1bT and 2bT are y0 (T−t,St ) , 1bT−t and 2bT−t , whent = 0. If the condition ⎡⎣( − r + ) 2⎤⎦>1 holds, an option price, the hedging strategy and capitalare defined by formulas (( ) ) ( ( ) )0 T 1T 2T ( 0( , 0 ) )CT=Se−⎡⎣ b T − T +−b T + T −y TS − T⎤⎦−( ) ( ) −Ke−rT⎡⎣ b1T T + −b2T T −(y0(T,S0 ))⎤⎦,* ( ) (( ) ) ( ( ) ) T t 1T t 2T t ( 0( , ) )t =e− − ⎡⎣ b− T −t − T −t + − b − T −t + T −t − y T−t St − T−t ⎤⎦ ,* ( ) ( ) ( ) r T t 1T t 2T t ( 0( , ))t tte K b T t b T t y T t SB= − − − ⎡⎣ − − + − − − − − ⎤⎦,* ( ) (( ) ) ( ( ) )T t 1T t 2T t ( 0( , ) )Xt=Ste− − ⎡⎣ b − T−t − T−t + − b − T−t + T−t − y T−t St − T−t ⎤⎦−( ) ( ) ( )r T t 1T t 2T t ( 0( , ))−Ke− −⎡⎣ b − T −t + −b − T −t − y T −t St⎤⎦.Proposition. Let 00SСT = СTS and KСT= СTK be sensitivity coefficients, determiningdependences of call-option price with dividends payment on asset's initial price S0 and on strikeprice If ⎡⎣( − r + ) 2⎤⎦>10 ( ) ( ) ( ( ) )S T 1T 2T 0 , 0 СT =e−⎡⎣b T− T+ −b T+ T− y T S − T⎤⎦,( ) ( ) ( ( )) K rT 1T 2T 0 , 0СT = −e−⎡⎣b T+ −b T− yTS ⎤⎦,and S0 0CT > , K 0CT < , i.e. the call-option price is an increasing function of asset's initial priceand decreasing function of strike price. The solution of perfect hedging problem as extreme caseof quantile hedging, when 0 , is obtained.
Keywords
dividends, European call option, hedging strategy, the price of an option, financial market, дивиденды, Европейский опцион купли, хеджирующая стратегия, цена опциона, финансовый рынокAuthors
Name | Organization | |
Daniluc Elena J. | Tomsk State University | Daniluc_Elena@sibmail.com |
Dyomin Nikolay S. | Tomsk State University |
References
