Guaranteed estimation of parameters and faultdetection in GARCH(1,1)-process | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2011. № 3(16).

Guaranteed estimation of parameters and faultdetection in GARCH(1,1)-process

Problem of fault detection of parameters of GARCH(1,1) process is considered. Parameters ofthe process before and after the change point are assumed to be unknown. An efficient algorithmfor detecting change point, which uses estimators of unknown parameters, is proposed. A sequentialprocedure for estimating the GARCH parameters based on the weighted least squares methodwith special weights is proposed. The choice of weights and the stopping rule guarantees the preassignedaccuracy of the estimation, which depends on parameter of procedure. Asymptotic propertiesof proposed estimators are studied. The asymptotic boundary for mean squares error is obtained.The procedure of change point detection is based on a comparison of parameters estimatorson different observation intervals. The upper bound for probabilities of false alarm and thedelay was found. Results of numerical simulation are given.

Download file
Counter downloads: 307

Keywords

mean square error, GARCH model, fault detection, least squares method, модифицированный МНК, момент разладки, GARCH(1, 1)

Authors

NameOrganizationE-mail
Sergeeva Ekaterina E.National Research Tomsk State Universitysergeeva_e_e@mail.ru
Vorobeychikov Sergey E.National Research Tomsk State Universitysev@mail.tsu.ru
Всего: 2

References

Дмитренко А.А., Конев В.В. О последовательной классификации процессов авторегрессии с неизвестной дисперсией помех// Проблемы передачи информации. 1995. Т. 31. Вып. 4. С. 51−62.
Буркатовская Ю.Б., Воробейчиков С.Э. Гарантированное обнаружение момента разладки GARCH-процесса // Автоматика и телемеханика. 2006. № 12. С. 56−70.
Ширяев А.Н. Вероятность. М.: Наука, 1989.
Беллман Р. Введение в теорию матриц. М.: Наука, 1976. 352 с.
Meder N., Vorobejchikov S. On guaranteed estimation of parameters of random processes by the weighted least square method // Proc. 15th Triennial World Congress of the International Federation of Automatic Control. Barcelona, 2002. Р. 1200.
Baillie R.T., Chung H. Estimation of GARCH models from the autocorrelation of the squares of a process // J. Time Ser. Anal. 2001. V. 22. No. 6. P. 631−650.
Francq C., Zacoian J.M. Quasi - Maximum likelihood estimation in GARCH processes when some coefficients are equal to zero // Stochastic Processes and their Application. 2007. V. 117. P. 1265−1285.
Francq C., Zacoian J.M. Maximum likelihood estimation of pure GARCH and ARMA - GARCH processes // Bernoulli. 2004. V. 10. P. 605−637.
Lai T.Z. Sequential change-point detection in quality control and dynamical systems // J. Res. Statist. Soc. B. 1995. V. 57. No. 4. P. 613−658.
Berkes I., Horvath L. The efficiency of the estimators of the parameters in GARCH processes // Annals of Statistics. 2004. V. 32. P. 633−655.
Kokoszka P., Leipus R. Change-point detection in the mean of dependent observations // Statistics & Probability Letters. 1998. V. 40. No. 4. P. 385−393.
Бассвиль М., Вилске А., Банвенист А. Обнаружение изменения свойств сигналов и динамических систем. М.: Мир, 1989.
Bollerslev T. Generalized autoregressive conditional heteroskedasticity // J. Econometrics. 1986. V. 86. P. 307−327.
 Guaranteed estimation of parameters and faultdetection in GARCH(1,1)-process | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2011. № 3(16).

Guaranteed estimation of parameters and faultdetection in GARCH(1,1)-process | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2011. № 3(16).

Download file