Model Predictive Control discretesystems with unknown input and its application to control problem of economic object
The problem considered in the paper deals with synthesis of Model Predictive Control that isapplied to the discrete system containing unknown input. The control is carried out on the base ofthe system output tracking. The prediction is derived on the base of state estimation obtained byKalman filter (extrapolator) and unknown input estimations. Two methods are considered to beused for evaluating the unknown input estimations. The first is based on the applying Kalman filter,the second - on the modified least-squares method. It is discussed that the choice of themethod depends on the available a priori statistical information concerning unknown input signals.The model investigated in the paper contains states, known and unknown inputs and disturbancesacting on the system. It is assumed also that the system is operating under the state and inputconstraints. The aim of the system control is to synthesize control inputs based on observationsproviding the system output to be close to the reference.The simulation results of the proposed methods are given for an example of the goods production,storage and delivery to consumers problem.
Keywords
production model,
estimations unknown input,
discrete systems,
model predictive control,
оценки неизвестного входа,
модель производства,
прогнозирующее управление,
дискретные системыAuthors
Pristupa Marina Yu. | National Research Tomsk State University | kiselevamy@gmail.com |
Smagin Valery I. | National Research Tomsk State University | vsm@mail.tsu.ru |
Всего: 2
References
Athans M. The matrix minimum principle // Information and Control. 1968. V. 11. Nо. 5/6. P. 592-606.
Brammer K. and Siffling G. Kalman-Bucy Filters. Norwood, MA: Artech House, Inc., 1989. 391 p.
Hsieh C.-S. A unified solution to unbiased minimum-variance estimation for systems with unknown inputs // Proc.17th World Congress The International Federation of Automatic Control. Seoul. Korea. July 6−11, 2008. P. 14502-14509.
Hsieh C.-S. Robust parameterized minimum variance filtering for uncertain systems with unknown inputs // Proc. American Control Conference. New York, 2007. P. 5118-5123.
Janczak D., Grishin Y. State estimation of linear dynamic system with unknown input and uncertain observation using dynamic programming // Control and Cibernetics. 2006. V. 35(4). P. 851-862.
Gillijns S., Moor B. Unbiased minimum-variance input and state estimation for linear discrete- time systems // Automatica. 2007. V. 43. P. 111-116.
Hsieh C.-S. Extension of the optimal unbiased minimum-variance filter for systems with unknown inputs // Proc. 15th IEEE International Workshop on Nonlinear Dynamics of Electronic Systems. Tokushima. Japan. 2007. P. 217-220.
Hsieh C.-S. Robust two-stage Kalman filters for systems with unknown inputs // IEEE Trans. Automat. Contr. 2000. V. AC-45. - P. 2374-2378.
Darouach M., Zasadzinski M., Xu S. J. Full-order observers for linear systems with unknown inputs // IEEE Trans. Automat. Contr. 1999. V. AC-39. P. 606.
Astrom K., Eykhoff P. System identification. A survey // Automatica. 1971. V.7. P.123−162.
Hou M., Patton R. Optimal filtering for systems with unknown inputs // IEEE Trans. on Automat. Contr. 1998. V. AC-43. P. 445-449.
Friedland B. Treatment of bias in recursive filtering // IEEE Trans. Automat. Contr. 1969. V. AC-14. P. 359−367.
Киселева М.Ю., Смагин В.И. Управление производством, хранением и поставками товаров на основе прогнозирующей модели выхода системы // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2009. № 2(7). C. 24-30.
Домбровский В.В., Домбровский Д.В., Ляшенко Е.А. Управление с прогнозирующей моделью системами со случайными зависимыми параметрами при ограничениях и применение к оптимизации инвестиционного портфеля // Автоматика и телемеханика. 2006. № 12. C. 71-85.
Maciejowski J.M. Predictive control with constraints. Prentice Hall, 2002. 331 p.
Camacho E. F., Bordons C. Model predictive control. London: Springer-Verlag. 2004. 405 p.
Перепелкин Е. А. Прогнозирующее управление экономической системой производства, хранения и поставок товаров потребителям // Экономика и математические методы. 2004. Т. 40. №. 1. С. 125-128.