New type multiwavelets of the fifth degree orthogonal to quintic polynomials
For the space of Hermitian splines of the fifth degree of a kind S
W = I TcL
NLk (x), a < x < b, k=0 i=0 with a uniform grid of nodes A
: u
= a + (b - a) i / 2
, i = 0, 1,..., 2
, L > 0, and the basic functions N
k
l) (uj) = Sj • Sk, l = 0,1,2 , with the centers in integers, it is proposed to use as wavelets functions M
i,k(x), satisfying the conditions of orthogonality to all polynomials of sixth order, i.e. f M
k(x)x
dx = 0, k = 0,1,2 Vi (m = 0,1,...,5). For the wavelets centered at even integers, a and the supports equal to the supports of basic splines on the grid A
, received two-scale relations of expansion and formulas for calculating the coefficients in the thinned grid A
from the spline coefficients in a dense grid A
in the form of solution of linear algebraic equations system with band matrix. There are results of numerical experiments presented. Justified the improving of compression of numerical data in comparison with the known quintic wavelets and multiwavelets.
Keywords
эрмитовы сплайны пятой степени,
мультивейвлеты,
ортогональность многочленам,
Hermitian splines of the fifth degree,
multiwavelets,
orthogonality to polynomialsAuthors
Shumilov Boris M. | National Research Tomsk State University | b_shumilov@math.tsu.ru |
Kuduev Altynbek Z. | Osh State University | altun_12@rambler.ru |
Всего: 2
References
Добеши И. Десять лекций по вейвлетам: пер. с англ. Ижевск: НИЦ «Регулярная и хаотическая динамика», 2001. 332 с.
Чуи Ч. Введение в вейвлеты: пер. с англ. М.: Мир, 2001. 412 с.
Новиков И.Я., Протасов В.Ю., Скопина М.А. Теория всплесков. М.: Физматлит, 2006. 616 с.
Strela V. Multiwavelets: regularity, orthogonality and symmetry via two-scale similarity transform // Stud. Appl. Math. 1997. V. 98. Iss. 4. P. 335-354.
Strela V., Heller P.N., Strang G., Topivala P., Heil C. The application of multiwavelet filter-banks to image processing // IEEE Trans. Signal Processing. 1999. V. 8. No. 4. P. 548-563.
Warming R., Beam R. Discrete multiresolution analysis using Hermite interpolation: Bior-thogonal multiwavelets // SIAM J. Sci. Comp. 2000. V. 22. No. 1. P. 269-317.
Dahmen W., Han B., Jia R.-Q., Kunoth A. Biorthogonal multiwavelets on the interval: cubic Hermite splines // Constr. Approx. 2000. V. 16. P. 221-259.
Han B. Approximation properties and construction of Hermite interpolants and biorthogonal multiwavelets // J. Approxim. Theory. 2001. V. 110. P. 18-53.
Турсунов Д.А., Шумилов Б.М., Эшаров Э.А., Турсунов Э.А. Новый тип эрмитовых муль-тивейвлетов пятой степени // Пятая Сибирская конференция по параллельным и высокопроизводительным вычислениям / под ред. проф. А.В. Старченко. Томск: Изд-во Том. ун-та, 2010.
Koro K., Ade K. Non-orthogonal spline wavelets for boundary element analysis // Engineering Analysis with Boundary Elements. 2001. V. 25. P. 149-164.
Завьялов Ю.С., Квасов Б.И., Мирошниченко В.Л. Методы сплайн-функций. М.: Наука, 1980. 352 с.
Strang G., Strela V. Short wavelets and matrix dilation equations // IEEE Trans. Signal Processing. 1995. V. 43. No. 1. P. 108-115.
Столниц Э., ДеРоуз Т., Салезин Д. Вейвлеты в компьютерной графике: пер. с англ. Ижевск: НИЦ «Регулярная и хаотическая динамика», 2002. 272 с.