Recursive estimation of bilinear ARX systems with input-error | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2013. № 4(25).

Recursive estimation of bilinear ARX systems with input-error

There is considered the problem of parameter estimation of bilinear ARX systems with noise in the input signals, described by the equations: r 1 2 3 Zi - X b0 Zi - m = X a0 Xi-m + X X c0 X - „V k +^(0, W = Xi + 42(0, m=1 m=0 m=0 k=1 where x , - unobserved and the observed input variables; Z - the observed output variable; 4 (i) - noise in the equation; 4 (i) - the noise in the input signal. We propose a recursive algorithm for estimation of parameters, which is a generalization of the method of least squares. It is proved that that under non-restrictive conditions on the signals and noises, the proposed algorithm gives a strongly consistent estimators. The simulation results confirmed the high efficiency of the algorithm.

Download file
Counter downloads: 352

Keywords

least squares method, error-in-variable, bilinear systems, recursive estimation, stochastic approximation, метод наименьших квадратов, билинейные системы, помеха наблюдения, стохастическая аппроксимация, рекуррентное оценивание

Authors

NameOrganizationE-mail
Ivanov Dmitriy V.Samara State University of Transportdvi85@mail.ru
Uskov Oleg V.Samara State University of Transportquentyn@bk.ru
Всего: 2

References

Беллман Р. Введение в теорию матриц. М.: Наука, 1989. 376 с.
Mann H.B., Wald A. On stochastic limit and order relationship // The Annals of Mathematical Statistics. 1943. V.14(3). P. 217-226.
Деревицкий Д.П., Фрадков А.Л. Прикладная теория дискретных адаптивнык систем управления. М.: Наука, 1991. 215с.
Chen H.F. Stochastic Approximation and Its Applications. Kluwer, Dordrecht, 2005.
Кацюба О.А. Теория идентификации стохастических динамических систем в условиях неопределенности: монография. Самара: СамГУПС, 2008. 119 с.
Zhu Z., Leung H. Adaptive identification of bilinear systems // Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, Phoenix, Arizona (March), 1999. P. 1289-1292.
Tsoulkas V., Koukoulas P., Kalouptsidis N. Identification of input-output bilinear systems using cumulants // Proc. 6th IEEE Int. Conf. on Electronics, Circuits and Systems. Pafos, Greece, 1999. P. 1105-1108.
Fnaiech F., Ljung L. Recursive identification of bilinear systems // Int. J. Control. 1987. V. 45(2). P. 453-470.
Ekman M. Modeling and Control of Bilinear Systems: Application to the Activated Sludge Process: PhD thesis, 2005.
Gabr M.M. Subba Rao T. On the identification of bilinear systems from operating records // Int. J. Control. 1984. V. 40(1). P. 121-128.
Льюнг Л. Идентификация систем. Теория для пользователя. М.: Наука, 1991. 432 с.
Ahmed M.S. Parameter estimation in bilinear systems by instrumental variable methods // Int. J. Control. 1986. V. 44. No. 4. P. 1177-1183.
Mohler R.R. Bilinear Control Processes: with Applications to Engineering, Ecology, and Medicine. New York: Academic Press, 1973.
 Recursive estimation of bilinear ARX systems with input-error | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2013. № 4(25).

Recursive estimation of bilinear ARX systems with input-error | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2013. № 4(25).

Download file