Spline estimate of the time series trend for a random number of data at measurement instants | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2015. № 1(33).

Spline estimate of the time series trend for a random number of data at measurement instants

In many problems of economy, science, and technology one deals with time series. The observed values of a random processy(t) at instants t 1, t 2, ..., t N, ... form a time series. One of the main goals of time series analysis is the problem of separating the trend. It is a systematic component because a selected trend allows one: (a) to predict the future based on the knowledge of the past; (b) to manage the process generating the series; (c) to describe characteristic features of the series. In the classical theory of time series, the process is measured at regular intervals, exactly one observation at each time instant. However, there exists an organization of the measurement process when the number of measurements is random. Such situations arise especially often in economic systems, for example, in the stock market. This leads to the necessity of developing the theory of time series analysis for a situation where the number of measurements at each time instant is random. Note that selecting a trend polynomial whose order exceeds four is inexpedient in view of a large error in the evaluation of polynomial coefficients. At the same time, if the number of observations is large, a low order polynomial can be inadequate to describe the true trend. The solution is in a spline estimate of the time series trend. In this work, we construct a theory of selecting a time series trend by splines of the first, second, and third orders when the number of measurements in each time is random. The estimates for the spline coefficients are obtained in an explicit form. We have investigated statistical characteristics of the obtained estimates.

Download file
Counter downloads: 351

Keywords

statistical properties of estimates, parameter estimation, second and third orders, spline of the first, time series trend, статистические свойства оценок, оценки параметров, второго и третьего порядков, сплайн первого, тренд временного ряда

Authors

NameOrganizationE-mail
Ustinova Irina Georg1evnaTomsk Polytechnic Universityigu@sibmail.com
Pakhomova Elena GrigoryevnaTomsk Polytechnic Universitypeg@tpu.ru
Всего: 2

References

Корнейчук Н.П. Сплайны в теории приближения. М.: Наука, 1984. 352 с.
Лифшиц К.И. Сглаживание экспериментальных данных сплайнами. Томск: Изд-во Том. ун-та, 1991. 180 с.
Завьялов Ю.С., Леус В.А., Скороспелов В.А. Сплайны в инженерной геометрии. М.: Машиностроение, 1985. 224 с.
Идрисов Ф.Ф., Константинова И.Г. Выделение трендов временных рядов при случайном числе измерений // Изв. вузов. Физика. 1999. Т. 42. № 4. С. 14-18.
Шумилов Б.М., Эшаров Э.А. Метод рекуррентной сплайн-прогнозирования степени 3 глубины 1. URL: http://www.ict.nsc.ru/ws/YM2005/9354/index.html (дата обращения 16.11.2014).
Шумилов Б.М., Эшаров Э.А. Метод рекуррентной сплайн-аппроксимации степени 3 глубины 1. URL: http://www.ict.nsc.ru/ws/YM2005/9440/index.html (дата обращения 16.11.2014).
Шумилов Б.М., Эшаров Э.А., Аркабаев Н.К. Построение и оптимизация прогнозов на основе рекуррентных сплайнов первой степени // Сибирский журнал вычислительной математики. 2010. Т. 13. № 2. С. 227-241.
Тривоженко Б.Е. Выделение трендов временных рядов и потоков событий. Томск: Изд-во Том. ун-та, 1989. 284 с.
Андерсон Т. Статистический анализ временных рядов. М.: Мир, 1976. 755 с.
Кендалл М.Д., Стьюарт А. Многомерный статистический анализ и временные ряды. М.: Наука, 1976. 736 с.
 Spline estimate of the time series trend for a random number of data at measurement instants | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2015. № 1(33).

Spline estimate of the time series trend for a random number of data at measurement instants | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2015. № 1(33).

Download full-text version
Counter downloads: 903