Analytical solution of the Schrodinger integral equation | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2020. № 67. DOI: 10.17223/19988621/67/1

Analytical solution of the Schrodinger integral equation

In this paper, the question about the use of wave dynamics for solving problems of membrane separation of helium isotopes in the gas state at cryogenic temperatures is considered. The dimensionless form of the stationary Schrodinger differential equation is obtained. Following that, the integral representation form of the wave function is written. This form, which is equivalent to the classical equation, is similar to the integral equation with a degenerate core; however, it contains a modulus of the argument with a shift along the real axis. Using the shift operator, the existing exponential function in the Schrodinger integral equation can be split into a differential operator and an exponential function of the argument module which does not contain a shift. The Fourier identity allows reducing the exponent of the modulus of the argument to a regular exponent. Next, based on the general property of a differential operator acting on an exponent, it is possible to calculate the spectral functions of the problem and write down the distribution for the wave function. This distribution is ultimately expressed through the spectra of the potential barrier. Thereafter, the structure and the spectrum of the composite barrier are considered. With the expression determining the reflection coefficient, it is found that the double-barrier system can have a resonant passage of one of the components in the sequence of distances between the layers of the membrane. AMS 2020 Mathematical Subject Classification: 45H05

Download file
Counter downloads: 84

Keywords

Fourier identity, exponential functions, shift operator, degenerate kernel, integral equation

Authors

NameOrganizationE-mail
Bubenchikov Mikhail A.Tomsk State Universitymichael121@mail.ru
Bubenchikov Aleksey M.Tomsk State Universitybubenchikov_am@mail.ru
Jambaa SoninbayarMongolian University of Science and Technology; National University of Mongoliajsoninbayar@yahoo.com
Lun-Fu Alexander V.Gazprom Transgaz Tomsk Ltd; Tomsk State Universitya.lunfu@gtt.gazprom.ru
Chelnokova Anna S.Tomsk State Universitysmolina-nyuta@mail.ru
Всего: 5

References

Mahmood J., Lee E.K., Jung M., Shin D., Jeon I.-Y., Jung S.-M., Choi H.-J., Seo J.-M., Bae S.-Y., Sohn S.-D., Park N., Oh J.H., Shin H.-J., Baek J.-B. Nitrogenated holey twodimensional structures // Nature Communications. 2015. V. 6. No. 1. Article number 6486. DOI: 10.1038/ncomms7486.
Морс Ф.М., Фешбах Г. Методы теоретической физики: в 2 т. Т. 1. М.: Книга по Требованию, 2012. 894 с.
Градштейн И.С., Рыжик Н.М. Таблицы интегралов, сумм, рядов и произведений. М.: Физматлит, 1963. 1100 с.
Lv R., Robinson J.A., Schaak R.E., Sun D., Sun Y., Mallouk T.E., Terrones M. Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets // Accounts of Chemical Research. 2015. V. 48. No. 1. P. 56-64. DOI: 10.1021/ar5002846.
Huang X., Zeng Z., Zhang H. Metal dichalcogenide nanosheets: preparation, properties and applications // Chemical Society Reviews. 2013. V. 42. No. 5. P. 1934-1946. DOI: 10.1039/c2cs35387c.
Lin Y., Williams T.V., Connell J.W. Soluble, exfoliated hexagonal boron nitride nanosheets // Journal of Physical Chemistry Letters. 2009. V. 1. No. 1. P. 277-283. DOI: 10.1021/ jz9002108.
Zhang J., Chen Y., Wang X. Two-dimensional covalent carbon nitride nanosheets: Synthesis, functionalization, and applications // Energy and Environmental Science. 2015. V. 8. No. 11. P. 3092-3108. DOI: 10.1039/c5ee01895a.
Vogt P., De Padova P., Quaresima C., Avila J., Frantzeskakis E., Asensio M.C., Resta A., Ealet B., Le Lay G. Silicene: Compelling experimental evidence for graphenelike twodimensional silicon // Physical Review Letters. 2012. V. 108. No. 15. Article number 155501. DOI: 10.1103/PhysRevLett.108.155501.
Zhu F., Chen W., Xu Y., Gao C., Guan D., Liu C., Qian D., Zhang S.-C., Jia J. Epitaxial growth of two-dimensional stanene // Nature Materials. 2015. V. 14. No. 10. P. 1020-1025. DOI: 10.1038/nmat4384.
Liu H., Du Y., Deng Y, Ye P.D. Semiconducting black phosphorus: synthesis, transport properties and electronic applications // Chemical Society Reviews. 2015. V. 44. No. 9. P. 2732-2743. DOI: 10.1039/c4cs00257a.
Berger C., Song Z., Li X., Wu X., Brown N., Naud C., Mayou D., Li T., Hass J., Marchenkov A.N. Electronic confinement and coherence in patterned epitaxial graphene // Science. 2006. No. 5777. P. 1191-1196.
Sutter P.W., Flege J.-I., Sutter E.A. Epitaxial graphene on ruthenium // Nature Materials. 2008. V. 5. No. 7. P. 406-411. DOI: 10.1038/nmat2166.
Zhang Y., Gomez L., Ishikawa F.N., Madaria A., Ryu K., Wang C., Badmaev A., Zhou C. Comparison of graphene growth on single-crystalline and polycrystalline Ni by chemical vapour deposition // Journal of Physical Chemistry Letters. 2010. V. 1. No. 20. P. 3101-3107. DOI: 10.1021/jz1011466.
Yu J., Qin L., Hao Y., Kuang S., Bai X., Chong Y.-M., Zhang W., Wang E. Vertically aligned boron nitride nanosheets: Chemical vapor synthesis, ultraviolet light emission, and superhydrophobicity // ACS Nano. 2010. V. 4. No. 1. P. 414-422. DOI: 10.1021/nn901204c.
Bianco E., Butler S., Jiang S., Restrepo O.D., Windl W., Goldberger J.E. Stability and exfoliation of germanane: A germanium graphane analogue // ACS Nano. 2013. V. 7. No. 5. P. 4414-4421. DOI: 10.1021/nn4009406.
 Analytical solution of the Schrodinger integral equation | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2020. № 67. DOI: 10.17223/19988621/67/1

Analytical solution of the Schrodinger integral equation | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2020. № 67. DOI: 10.17223/19988621/67/1

Download full-text version
Counter downloads: 535