Eigenfunction expansions of the magnetic Schrodinger operator in bounded domains | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2021. № 69. DOI: 10.17223/19988621/69/1

Eigenfunction expansions of the magnetic Schrodinger operator in bounded domains

In this work, we introduce the magnetic Schrodinger operator corresponding to the generalized Dirichlet problem. We prove its self-adjointness and discreteness of the spectrum in bounded domains in the multidimensional case. We also prove the basis property of its eigenfunctions in the Lebesgue space and in the magnetic Sobolev space. We give a new characteristic of the definition domain of the magnetic Schrodinger operator. We investigate the existence and uniqueness of a solution of the magnetic Schrodinger equation with a spectral parameter. It is proved that if the spectral parameter is different from the eigenvalues, then the first generalized Dirichlet problem has a unique solution. We then find the solvability condition for the generalized Dirichlet problem when the spectral parameter coincides with the eigenvalue of the Schrodinger magnetic operator. AMS Mathematics Subject Classification: 35J10, 35J25, 46E35, 34L10

Download file
Counter downloads: 210

Keywords

magnetic Schrodinger operator, discrete spectrum, eigenvalues and eigenfunctions, eigenfunction expansions, theorems for existence and uniqueness of solutions

Authors

NameOrganizationE-mail
Aliev Araz R.Azerbaijan State Oil and Industry University; Institute of Mathematics and Mechanics of Azerbaijan National Academy of Sciencesalievaraz@asoiu.edu.az; alievaraz@yahoo.com
Rajabov Shahin Sh.Institute of Mathematics and Mechanics of Azerbaijan National Academy of Sciencesshahin.racabov.88@mail.ru
Всего: 2

References

Круликовский Н.Н. Пути развития спектральной теории обыкновенных дифференциальных операторов. Томск: ТГУ, 2008. 224 с.
Rajabov Sh.Sh. Generalized Dirichlet problems for magnetic Schrodinger operator // Proceedings of the Institute of Mathematics and Mechanics, National Academy of Sciences of Azerbaijan. 2019. V. 45. No. 1. P. 111-118.
Leinfelder H., Simader C. Schrodinger operators with singular magnetic vector potentials // Math. Z. 1981. V. 176. P. 1-19.
Баландин М.Ю., Шурина Э.П. Векторный метод конечных элементов. Новосибирск: НГТУ, 2001. 69 с.
Гилбарг Д., Трудингер Н. Эллиптические дифференциальные уравнения с частными производными второго порядка. М.: Наука, 1989. 464 с.
Raymond N. Elements of spectral theory. Master. France, 2017. 61 p.
Шубин М.А. Лекции об уравнениях математической физики. М.: МЦНМО, 2003. 303 с.
Rajabov Sh.Sh. On the existence and uniqueness of the solution of Dirichlet generalized problem in arbitrary domain of n-dimensional space Rn for magnetic Schrodinger operator // Azerbaijan Journal of Mathematics. 2020. V. 10. No. 1. P. 172-180.
Мизохата С. Теория уравнений с частгными производными. М.: Мир, 1977. 504 с.
Adams R.A., Fournier J.J. Sobolev Spaces. Amsterdam; Boston: Academic Press, 2003. 317 p.
Алиев А.Р., Эйвазов Э.Х. О дискретности спектра магнитного оператора Шредингера // Функциональный анализ и его приложения. 2012. Т. 46. № 4. С. 83-85.
Рид М., Саймон Б. Методы современной математической физики. Т. 4. Анализ операторов. М.: Мир, 1982. 428 с.
Ахиезер Н.И., Глазман И.М. Теория линейных операторов в гильбертовом пространстве. Т. 1. Харьков: Изд-во Харьковского университета, Вища школа, 1977. 318 с.
 Eigenfunction expansions of the magnetic Schrodinger operator in bounded domains | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2021. № 69. DOI: 10.17223/19988621/69/1

Eigenfunction expansions of the magnetic Schrodinger operator in bounded domains | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2021. № 69. DOI: 10.17223/19988621/69/1

Download full-text version
Counter downloads: 363