On the asymptotic structure of non-critical Markov stochastic branching processes with continuous time | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2021. № 69. DOI: 10.17223/19988621/69/3

On the asymptotic structure of non-critical Markov stochastic branching processes with continuous time

The work is devoted to the study of the transition probabilities of Markov branching random processes of continuous time with minimal moment conditions. Consider the non-critical case, i.e. the case when the average density of the conversion rate of particles is not zero. Let us find an asymptotic representation for the transition probabilities without additional moment conditions. To find the finite limiting invariant distribution, we restrict ourselves to the condition of finiteness of the moment of the type E [x ln x] for the transformation density of particles. The statement on the asymptotic representation of the probabilistic generating function (Main Lemma) of the process under study and its differential analogue will underlie our conclusions. The theory of regularly varying functions in the sense of Karamat is essentially applied.

Download file
Counter downloads: 142

Keywords

Branching process, regularly varying functions, Main Lemma, transition functions, invariant distributions

Authors

NameOrganizationE-mail
Imomov Azam A.Karshi State Universityimomov_azam@mail.ru
Meyliev Abror Kh.Karshi State Universityabror_meyliyev@mail.ru
Всего: 2

References

Harris T.E. The theory of branching processes. Berlin: Springer-Verlag, 1963.
Bellman R, Harris Т.Е. On the theory of age-dependent stochastic branching processes // Proc. Nat. Acad. Sci. USA. 1948. V. 34. P. 601-604.
Севастьянов Б.А. Ветвящиеся процессы с превращениями, зависящими от возраста частиц // Теория вероятн. и ее применен. 1964. Т. 9. № 4. С. 577-594.
Севастьянов Б.А. Ветвящиеся процессы. М.: Наука, 1971.
Smith W.L., Wilkinson W. On branching processes in random environment // Ann. Math. Statist. 1969. V. 40(3). P. 814-827.
Ватутин В.А., Дьяконова Е.Е. Ветвящиеся процессы в случайной среде и бутылочные горлышки в эволюции популяций // Теория вероятн. и ее применен. 2006. Т. 51. № 1. С. 22-46.
Ватутин В.А., Дьяконова Е.Е. Вероятность невырождения для одного класса многотипных докритических ветвящихся процессов в случайной среде // Матем. заметки. 2020. Т. 107. № 2. С. 163-177.
Dyakonova E.E., Li D., Vatutin V.A., Zhang M. Branching processes in random environment with immigration stopped at zero // J. Appl. Probab. 2020. V. 57(1). P. 237-249.
Ватутин В.А., Дьяконова Е.Е. Докритические ветвящиеся процессы в случайной среде с иммиграцией: выживание одного семейства // Теория вероятн. и ее применен. 2020. Т. 65. № 4. С. 671-692.
Dong C., Smadi C., Vatutin V.A. Critical branching processes in random environment and Cauchy domain of attraction // ALEA, Lat. Am. J. Probab. Math. Stat. 2020. V. 17. P. 877-900.
Ватутин В.А., Дьяконова Е.Е., Топчий В.А. Критические процессы Гальтона - Ватсона со счетным множеством типов частиц и бесконечными вторыми моментами // Матем. сб. Т. 212. № 1. 2021. С. 3-27.
Колмогоров А.Н. К решению одной биологической задачи // Изв. НИИ матем. и мех. Томского ун-та. 1938. № 2. С. 7-12.
Athreya K.B. and Ney P.E. Branching processes. New York: Springer, 1972.
Сенета Е. Правильно меняющиеся функции: пер. с англ. М.: Наука, 1985.
Zolotarev V.M. More exact statements of several theorems in the theory of branching processes // Theory Prob. and Appl. 1957. V. 2. P. 245-253.
Asmussen S., Hering H. Branching Processes. Boston, 1983.
Bingham N.H., Goldie C.M., Teugels J.L. Regular Variation. Cambridge, 1987.
Imomov A.A. On a limit structure of the Galton-Watson branching processes with regularly varying generating functions // Probab. and Math. Stat. 2019. V. 39(1). P. 61-73.
Чистяков В.П. Локальные предельные теоремы теории ветвящихся случайных процессов // Теория вероятн. и ее применен. 1957. Т. 2. № 3. P. 360-374.
Imomov A.A. Limit Properties of Transition Functions of Continuous-Time Markov Branching Processes // Int. J. Stoch. Anal. 2014. 10 p. http://dx.doi.org/10.1155/2014/409345.
Imomov A.A. A differential analog of the main lemma of the theory of Markov branching processes and its applications // Ukrainian Math. Journal. 2005. V. 57(2). P. 307-315.
Imomov A.A. On conditioned limit structure of the Markov branching process without finite second moment // Malaysian J. Math. Sciences. 2017. V. 11(1). P. 393-422.
Slack R.S. A branching process with mean one and possible infinite variance // Z. Wahrscheinlichkeitstheorie verw. Geb. 1968. V. 9. P. 139-145.
 On the asymptotic structure of non-critical Markov stochastic branching processes with continuous time | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2021. № 69. DOI: 10.17223/19988621/69/3

On the asymptotic structure of non-critical Markov stochastic branching processes with continuous time | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2021. № 69. DOI: 10.17223/19988621/69/3

Download full-text version
Counter downloads: 363