Dynamic analysis of a two-mass mechanical system in a dissipative medium with allowance for inertial forces | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2024. № 87. DOI: 10.17223/19988621/87/11

Dynamic analysis of a two-mass mechanical system in a dissipative medium with allowance for inertial forces

In this paper, a dynamic analysis of a two-mass mechanical system is performed. The aim of this work is to study the effect of the inertial forces of bodies in relative motion within the mechanical system on the motion of this system in a dissipative medium with linear viscous resistance to the motion of one of its bodies (a reference body). The analysis is based on the decomposition of the absolute impulse of the mechanical system into portable and relative components. The resolution shows that the relative inertia forces significantly affect the absolute motion of the mechanical system in a dissipative medium. The equation for such motion is presented, where the total mass of the mechanical system is conditionally concentrated in the reference body. The obtained results and conclusions can be used to solve the problem of two gravitating bodies, one of which is located in a dissipative medium, with the center of mass of the bodies moving relative to the center of the inertial domain. The results are also applicable to three-mass mechanical systems of the inertioid type.

Download file
Counter downloads: 4

Keywords

two-mass mechanical system, momentum and inertial forces, inertial domain, dissipative parameter, dissipative loss angle

Authors

NameOrganizationE-mail
Savel’kaev Sergey V.Siberian State University of Geosystems and Technologiessergei.savelkaev@yandex.ru
Всего: 1

References

Никитин Н.Н. Курс теоретической механики. М.: Высш. школа, 1990. 607 с.
Савельев И.В. Основы теоретической физики. Механика и электродинамика. М.: Наука, 1991. Т. 1. 496 с.
Савелькаев С.В. Эффект независимости величины смещения центра масс механической системы от диссипативности внешней среды // Механика машин, механизмов и материалов. 2011. № 4 (17). С. 42-48.
Савелькаев С.В. Механика. Корреляционная механика механических систем: препринт. Новосибирск: СГГА, 2013. 67 с.
Толчин В.Н. Инерциоид. Силы инерции как источник поступательного движения. Пермь: Кн. изд-во, 1977. С. 100 с.
Егоров А.Г., Захарова О.С. Энергетически оптимальное движение вибратора в среде с наследственным законом сопротивления // Известия РАН. Теория и системы управления. 2015. № 3. С. 168-176.
Шипов Г.И. Теория физического вакуума. М.: НТ-Центр, 1993. 362 с.
Черноусько Ф.Л. Оптимальные периодические движения двухмассовой системы в со противляющейся среде // Прикладная математика и механика. 2008. Т. 72, вып. 2. С. 202-215.
 Dynamic analysis of a two-mass mechanical system in a dissipative medium with allowance for inertial forces | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2024. № 87. DOI: 10.17223/19988621/87/11

Dynamic analysis of a two-mass mechanical system in a dissipative medium with allowance for inertial forces | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2024. № 87. DOI: 10.17223/19988621/87/11

Download full-text version
Counter downloads: 194