A study of the physical and mechanical properties of hot-pressed composite ceramics of the Hf–Ti–Cr–Fe–V–N system
The concept of synthesizing multicomponent (five or more components) systems in equiatomic or near-equiatomic percentages has opened a new class of materials, including high-entropy alloys (HEAs) and high-entropy ceramics (HEC). The composition of each element varies from 5 to 35 at.%. It is generally accepted that the exceptional performance of high-entropy materials is achieved through four “basic effects”: the high-entropy effect, the lattice distortion effect, the slow diffusion effect, and the “cocktail” effect. The properties of multicomponent systems are determined not only by the constituent elements, but also by the formation of phases. Thus, depending on the composition and methods of preparation and processing of the alloy, the ordered and disordered phases of the solid solution are formed in the HEAs. Both the atoms of individual elements and the resulting phases contribute to the properties of HEAs. They possess valuable properties such as high corrosion resistance, wear resistance, hardness, and other particular mechanical properties. This class of materials is under active scientific study, and the methods for their production, such as vacuum arc melting, selective laser melting, magnetron sputtering, are being developed. One of the promising and highly efficient methods for producing HEAs and HECs is self-propagating high-temperature synthesis (SHS). The main advantages of this method are high productivity, low energy consumption, environmental safety, regulation of the structure and properties of the final products, and synthesis mode control due to the possibility of selecting various combustion temperature and pressure values. This study examines the effect of the temperature regime of the hot-pressing process on the structure and properties of ceramic samples of the Hf-Ti-Cr-Fe-V-N system. HEC materials are obtained as a result of high-temperature exothermic reactions with preliminary mechanical activation of the powder mixture in a planetary mill. The preparation of compact ceramic samples is carried out using the hot-pressing method in the temperature range of 1300-1450 °C. The X-ray diffraction analysis of the resulting samples allows one to determine the dependence of the structure, density, and hardness on the pressing temperature. The maximum hardness (1858±50 HV) is obtained at a pressing temperature of 1450 °C.
Keywords
ceramics,
hardness,
hot pressing,
structure,
densityAuthors
Evseev Nikolay S. | Tomsk State University; Institute for Problems of Chemical and Energetic Technologies of the Siberian Branch of the Russian Academy of Sciences | evseevns@gmail.com |
Zhukov Ilya A. | Tomsk State University; Institute for Problems of Chemical and Energetic Technologies of the Siberian Branch of the Russian Academy of Sciences | gofra930@gmail.com |
Mubarakov Raul | Tomsk State University | raul.mub@mail.ru |
Bel’chikov Ivan A. | Tomsk State University | ivan70422@gmail.com |
Всего: 4
References
Орданьян С.С., Несмелов Д.Д., Новоселов Е.С. Статистическая оценка механических характеристик горячепрессованной керамики в системе ZrB2-SiC // Вестник Томского государственного университета. Математика и механика. 2023. № 82. С. 150-160.
Гордеев Ю.Н., Абкарян А.К., Ковалевская О.В. Перспективные композиционные материалы на основе сверхвысокомолекулярного полиэтилена, матрично-наполненные сверхтонкими порошками оксида алюминия // Вестник Сибирского государственного аэрокосмического университета им. академика М.Ф. Решетнева. 2011. №" 1 (34). С. 128-132.
Евсеев Н.С., Матвеев А.Е., Бельчиков И.А., Жуков И.А., Ворожцов А.Б., Мубараков Р.Г. Получение высокоэнтропийных композитов на основе Hf-Ti-Cr-FeV-N в режиме высокотемпературных экзотермических реакций // Известия вузов. Физика. 2023. Т. 66, № 8 (789). С. 131-133.
Jiang C., Li R., Wang X., Shang H., Zhang Y., Liaw P.K. Diffusion Barrier Performance of AlCrTaTiZr/AlCrTaTiZr-N High-Entropy Alloy Films for Cu/Si Connect System // Entropy. 2020. V. 22. Art. 234.
Guo Y., Shang X., Liu Q. Microstructure and properties of in-situ TiN reinforced laser cladding CoCr2FeNiTix high-entropy alloy composite coatings // Surf. Coat. Technol. 2018. V. 344. P. 353-358.
Evseev N., Matveev A., Belchikov I., Zhukov I. Self-propagating high-temperature synthesis of high-entropy ceramic composition (Hf0.25Ti0.25Cr0.25(FeV)0.25)N // Materials Letters. 2023. V. 346. Art. 134562.
Zhang Z., Zhua S., Liu Y., Liu L., Ma Z. Phase structure, mechanical properties and thermal properties of high-entropy diboride (Hf0.25Zr0.25Ta0.25Sc0.25)B2 // Journal of the European Ceramic Society. 2022. V. 42 (13). С. 5303-5313.
Dippo O.F., Mesgarzadeh N., Harrington T.J., Schrader G.D., Vecchio K.S. Bulk high-entropy nitrides and carbonitrides // Scientific reports. 2020. V. 10 (1). Art. 21288.
Kanzamanova G.Z., Kinelovsky S.A., Kozulin A.A. Shaped-Charge Treatment Effects Accompanying the Formation of Hard Structure and New Phase States in Coatings on Titanium // Behavior of Materials under Impact, Explosion, High Pressures and Dynamic Strain Rates. Springer, 2023. P. 69-82.
Harrington T.J., Gild J., Sarker P., Toher C., Rost C.M., Dippo O.F., McElfresh C., Kauf-mann K., Marin E., Borowski L., Hopkins P.E., Luo J., Curtarolo S., Brenner D. W., Vecchio K.S. Phase stability and mechanical properties of novel high entropy transition metal carbides // Acta Materialia. 2019. V. 166. P. 271-280.
Gelchinski B., Balyakin I., Ilinykh N., Rempel A. Analysis of the Probability of Synthesizing High-Entropy Alloys in the Systems Ti-Zr-Hf-V-Nb, Gd-Ti-Zr-Nb-Al, and Zr-Hf-V-Nb-Ni // PhysicalMesomechanics. 2021. V. 24. P. 701-706.
Junjie H., Guo H., Jing L., Jingchao T. New class of high-entropy defect fluorite oxides RE2(Ce0.2Zr0.2Hf0.2Sn0.2Ti0.2)2O7 (RE = Y, Ho, Er, or Yb) as promising thermal barrier coatings // Journal of the European Ceramic Society. 2021. V. 41 (12). P. 6080-6086.
Yan X., Constantin L., Lu Y., Silvain J.F., Nastasi M., Cui B. (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics with low thermal conductivity // Journal of the American Ceramic Society. 2018. V. 101 (10). С. 4486-4491.
Evseev N.S., Matveev A.E., Nikitin P.Yu., Abzaev Yu.A., Zhukov I.A. A theoretical and experimental investigation on the SHS synthesis of (HfTiCN)-TiB2 high-entropy composite // Ceramics International. 2022. V. 48 (11). P. 16010-16014.
Joseph J., Haghdadi N., Shamlaye K., Hodgson P., Barnett M., Fabijanic D. The sliding wear behaviour of CoCrFeMnNi and AlxCoCrFeNi high entropy alloys at elevated temperatures // Wear. 2019. V. 428. P. 32-44.
Kao Y.F., Chen T.J., Chen S.K., Yeh J. W. Microstructure and mechanical property of as-cast,homogenized, and-deformed AlxCoCrFeNi (0 < x № 2) high-entropy alloys //Journal of Alloys and Compounds. 2009. V. 488 (1). P. 57-64.
MacDonald B.E., Fu Z., Wang X., Li Z., Chen W., Zhou Y., Raabe D., Schoenung J., Hahn H., Lavernia E.J. Influence of phase decomposition on mechanical behavior of an equiatomic CoCuFeMnNi high entropy alloy // Acta Materialia. 2019. V. 181. P. 25-35.
Yeh J.W. Overview of high-entropy alloys // High-entropy alloys: fundamentals and applica tions. Springer, 2016. P. 1-19.
Yan X., Guo H., Yang W., Pang S., Wang Q., Liu Y., Liaw P.K., Zhang T. Al0.3CrxFeCoNi high-entropy alloys with high corrosion resistance and good mechanical properties // Journal of Alloys and Compounds. 2021. V. 860. Art. 158436.
Ye Y.F., Wang Q., Lu J., Liu C.T., Yang Y. High-entropy alloy: challenges and prospects // Materials Today. 2016. V. 19 (6). P. 349-362.
Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys // Materials Science and Engineering: A. 2004. V. 375. P. 213-218.
Rost C.M., Sachet E., Borman T., Moballegh A., Dickey E.C., Hou D., Jones J.L., Stefano Curtarolo S. Entropy-stabilized oxides // Nature communications. 2015. V. 6 (1). Art. 8485.
George E.P., Raabe D., Ritchie R.O. High-entropy alloys // Nature reviews materials. 2019. V. 4 (8). P. 515-534.