Ductile fracture of Mg–3Al–1Zn alloy under dynamic loads | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2025. № 95. DOI: 10.17223/19988621/95/14

Ductile fracture of Mg–3Al–1Zn alloy under dynamic loads

The evaluation of the physical and mechanical properties of materials at high strain rates plays a key role in improving the accuracy of predicting the stress-strain state of structures operating under extreme conditions. This paper presents the results of a comprehensive experimental and numerical study of the mechanical response of thin-sheet rolled products of Mg-3Al-1Zn alloy (MA2-1) to dynamic punching and uniaxial tension. Magnesium alloy samples were exposed to uniaxial tension at rates ranging from 0.1 to 1000 s-1 and punching with a semispherical indenter at velocities of 10, 5, 1, and 0.1 m/s. A numerical simulation of the experimental conditions was carried out to estimate the resistance to high-speed plastic deformation under uniaxial and biaxial tension and to determine the stress distribution in the Mg-3Al-1Zn alloy plate under the specified loading conditions. To describe the deformation, damage, and fracture of Mg-3Al-1Zn alloy, the computational model was based on the model of the mechanical behavior of the alloy with a hexagonal close-packed (HCP) crystal lattice and the model of damage initiation and growth. The simulation results confirmed that the fracture of the magnesium alloy was ductile under high-speed biaxial tension. It was found that cracks were formed during biaxial tension under conditions of punching by a hemispherical indenter at velocities from 10 to 0.1 m/s at lower values of equivalent plastic strains than during uniaxial tension at similar strain rates. The crack shapes and plate deflections obtained in the calculations of dynamic punching of the Mg-3Al-1Zn alloy plates using the model of damaged HCP materials were consistent with those observed in the experiments.

Download file
Counter downloads: 8

Keywords

dynamic punching test, uniaxial tension, magnesium alloys, high strain rates, stress triaxiality

Authors

NameOrganizationE-mail
Skripnyak Vladimir V.Tomsk State Universityskrp2012@yandex.ru
Skripnyak Nataliya V.Tomsk State Universitynatali.skrp@mail.ru
Zagorodkin Oleg N.Tomsk State Universitystill035@gmail.com
Skripnyak Vladimir A.Tomsk State Universityskrp2006@yandex.ru
Всего: 4

References

Yang J., Zhu Z., Han S., Gu Y., Zhu Z., Zhang H.-D. Evolution, limitations, advantages, and future challenges of magnesium alloys as materials for aerospace applications // Journal of Alloys and Compounds. 2024. V. 1008. Art. 176707. doi: 10.1016/j.jallcom.2024.176707.
Yang M., Chen C., Wang D., Shao Y., Zhou W., Shuai C., Yang Y., Ning X. Biomedical rare-earth magnesium alloy: Current status and future prospects // Journal of Magnesium and Alloys. 2024. V. 12. P. 1260-1282. doi: 10.1016/j.jma.2024.03.014.
Skripnyak V.V., Skripnyak V.A. Hexagonal close-packed (hcp) alloys under dynamic impacts // Journal of Applied Physics. 2022. V. 131. Art. 165902. doi: 10.1063/5.0085338.
Wang J., Yuan X., Jin P., Ma H., Shi B., Zheng H., Chen T., Xia W. Study on modified Johnson- Cook constitutive material model to predict the dynamic behavior Mg-1Al-4Y alloy // Materials Research Express. 2020. V. 7 (2). Art. 026522. doi: 10.1088/2053-1591/ab7070.
Luan J., Sun C., Li X., Zhang Q. Constitutive model for AZ31 magnesium alloy based on isothermal compression test // Materials Science and Technology. 2014. V. 30 (2). P. 211219. doi: 10.1179/1743284713Y.0000000341.
Huang X., Hou J., Lin B., Li B., Jiang B. Deformation localization behavior research of AZ31 magnesium alloy under impact load // Journal of Physics: Conference Series. 2023. V. 2541. Art. 012054. doi: 10.1088/1742-6596/2541/1/012054.
Ozdur N.A., Ermana S.C., Seghir R., Stainier L., Aydiner C.C. Thermomechanical investiga tion of textured magnesium in an effort to validate crystal plasticity simulations // Procedia Structural Integrity. 2024. V. 61. P. 277-284. doi: 10.1016/j.prostr.2024.06.035.
Needleman A., Tvergaard V. Analyses of Plastic Flow Localization in Metals // Applied Mechanics Reviews. 1992. V. 45 (3S). Р. S3-S18. doi: 10.1115/1.3121390.
Zerilli F.J., Armstrong R.W. Constitutive equation for h.c.p. metals and high strength alloy steels // High strain rate effects on polymer, metal and ceramic matrix composites and other advanced materials. New York: ASME, 1995. V. 48. Art. 121.
Yasnikov I.S., Vinogradov A., Estrin Y. Revisiting the Considere criterion from the viewpoint of dislocation theory fundamentals // Scripta Materialia. 2014. V. 76. P. 37-40. doi: 10.1016/j.scriptamat.2013.12.009.
Lukas P., Trojanova Z. Effect of fabrication processing on the deformation behaviour of AZ31 magnesium alloys // Kovove Materialy-Metallic Materials. 2011. V. 49. P. 385-391. doi: 10.4149/km-2011-6-385.
Скрипняк В.А., Скрипняк В.В., Козулин А.А., Иохим К.В. Влияние концентраторов напряжений на механическое поведение магниевого сплава при высокоскоростной деформации в температурном диапазоне от 295 К до 673 К // Вестник Пермского национального исследовательского политехнического университета. Механика. 2019. № 1. С. 151-160. doi: 10.15593/perm.mech/2019.1.13.
 Ductile fracture of Mg–3Al–1Zn alloy under dynamic loads | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2025. № 95. DOI: 10.17223/19988621/95/14

Ductile fracture of Mg–3Al–1Zn alloy under dynamic loads | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2025. № 95. DOI: 10.17223/19988621/95/14

Download full-text version
Counter downloads: 79