Ductile fracture of Mg–3Al–1Zn alloy under dynamic loads
The evaluation of the physical and mechanical properties of materials at high strain rates plays a key role in improving the accuracy of predicting the stress-strain state of structures operating under extreme conditions. This paper presents the results of a comprehensive experimental and numerical study of the mechanical response of thin-sheet rolled products of Mg-3Al-1Zn alloy (MA2-1) to dynamic punching and uniaxial tension. Magnesium alloy samples were exposed to uniaxial tension at rates ranging from 0.1 to 1000 s-1 and punching with a semispherical indenter at velocities of 10, 5, 1, and 0.1 m/s. A numerical simulation of the experimental conditions was carried out to estimate the resistance to high-speed plastic deformation under uniaxial and biaxial tension and to determine the stress distribution in the Mg-3Al-1Zn alloy plate under the specified loading conditions. To describe the deformation, damage, and fracture of Mg-3Al-1Zn alloy, the computational model was based on the model of the mechanical behavior of the alloy with a hexagonal close-packed (HCP) crystal lattice and the model of damage initiation and growth. The simulation results confirmed that the fracture of the magnesium alloy was ductile under high-speed biaxial tension. It was found that cracks were formed during biaxial tension under conditions of punching by a hemispherical indenter at velocities from 10 to 0.1 m/s at lower values of equivalent plastic strains than during uniaxial tension at similar strain rates. The crack shapes and plate deflections obtained in the calculations of dynamic punching of the Mg-3Al-1Zn alloy plates using the model of damaged HCP materials were consistent with those observed in the experiments.
Keywords
dynamic punching test,
uniaxial tension,
magnesium alloys,
high strain rates,
stress triaxialityAuthors
Skripnyak Vladimir V. | Tomsk State University | skrp2012@yandex.ru |
Skripnyak Nataliya V. | Tomsk State University | natali.skrp@mail.ru |
Zagorodkin Oleg N. | Tomsk State University | still035@gmail.com |
Skripnyak Vladimir A. | Tomsk State University | skrp2006@yandex.ru |
Всего: 4
References
Yang J., Zhu Z., Han S., Gu Y., Zhu Z., Zhang H.-D. Evolution, limitations, advantages, and future challenges of magnesium alloys as materials for aerospace applications // Journal of Alloys and Compounds. 2024. V. 1008. Art. 176707. doi: 10.1016/j.jallcom.2024.176707.
Yang M., Chen C., Wang D., Shao Y., Zhou W., Shuai C., Yang Y., Ning X. Biomedical rare-earth magnesium alloy: Current status and future prospects // Journal of Magnesium and Alloys. 2024. V. 12. P. 1260-1282. doi: 10.1016/j.jma.2024.03.014.
Skripnyak V.V., Skripnyak V.A. Hexagonal close-packed (hcp) alloys under dynamic impacts // Journal of Applied Physics. 2022. V. 131. Art. 165902. doi: 10.1063/5.0085338.
Wang J., Yuan X., Jin P., Ma H., Shi B., Zheng H., Chen T., Xia W. Study on modified Johnson- Cook constitutive material model to predict the dynamic behavior Mg-1Al-4Y alloy // Materials Research Express. 2020. V. 7 (2). Art. 026522. doi: 10.1088/2053-1591/ab7070.
Luan J., Sun C., Li X., Zhang Q. Constitutive model for AZ31 magnesium alloy based on isothermal compression test // Materials Science and Technology. 2014. V. 30 (2). P. 211219. doi: 10.1179/1743284713Y.0000000341.
Huang X., Hou J., Lin B., Li B., Jiang B. Deformation localization behavior research of AZ31 magnesium alloy under impact load // Journal of Physics: Conference Series. 2023. V. 2541. Art. 012054. doi: 10.1088/1742-6596/2541/1/012054.
Ozdur N.A., Ermana S.C., Seghir R., Stainier L., Aydiner C.C. Thermomechanical investiga tion of textured magnesium in an effort to validate crystal plasticity simulations // Procedia Structural Integrity. 2024. V. 61. P. 277-284. doi: 10.1016/j.prostr.2024.06.035.
Needleman A., Tvergaard V. Analyses of Plastic Flow Localization in Metals // Applied Mechanics Reviews. 1992. V. 45 (3S). Р. S3-S18. doi: 10.1115/1.3121390.
Zerilli F.J., Armstrong R.W. Constitutive equation for h.c.p. metals and high strength alloy steels // High strain rate effects on polymer, metal and ceramic matrix composites and other advanced materials. New York: ASME, 1995. V. 48. Art. 121.
Yasnikov I.S., Vinogradov A., Estrin Y. Revisiting the Considere criterion from the viewpoint of dislocation theory fundamentals // Scripta Materialia. 2014. V. 76. P. 37-40. doi: 10.1016/j.scriptamat.2013.12.009.
Lukas P., Trojanova Z. Effect of fabrication processing on the deformation behaviour of AZ31 magnesium alloys // Kovove Materialy-Metallic Materials. 2011. V. 49. P. 385-391. doi: 10.4149/km-2011-6-385.
Скрипняк В.А., Скрипняк В.В., Козулин А.А., Иохим К.В. Влияние концентраторов напряжений на механическое поведение магниевого сплава при высокоскоростной деформации в температурном диапазоне от 295 К до 673 К // Вестник Пермского национального исследовательского политехнического университета. Механика. 2019. № 1. С. 151-160. doi: 10.15593/perm.mech/2019.1.13.