Theoretical-experimental estimate of resistance of spacecraft honeycomb panels upon impacts from meteoroids and space debris | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2014. № 2 (28).

Theoretical-experimental estimate of resistance of spacecraft honeycomb panels upon impacts from meteoroids and space debris

Results of the theoretical and experimental study of ballistic characteristics of spacecraft honeycombs upon impacts from meteoroids and space debris are presented. Consequences of the impact of high-speed particles on thin-walled spacecraft structures spacecraft and their failure criterions are considered. Damage options for honeycomb sandwich structures made of an aluminum alloy are given. An option of modification of the ballistic limit equations for the honeycomb structures on the example of application of the modified Cour-Palais (Christiansen-Cour-Palais) Whipple bumper equation for the purpose to introduce a functional dependence of the critical diameter of penetrating particles on the impact angle is proposed. For a standard honeycomb design of the Spektr-UF spacecraft, the results of the performed experiments received on ultra-high speed launcher are presented. The ballistic limit dependences calculated by a theoretical method are correlated to the experimental values which have been selected by criterion of perforation. Some ways to improve the resistance of the honeycomb panels to meteoroid/debris damage are given.

Download file
Counter downloads: 444

Keywords

космический мусор, соты, защита от загрязнений, гиперскоростное воздействие, баллистическая кривая ограничения, space debris, honeycomb, debris protection, hypervelocity impact, ballistic limit curve

Authors

NameOrganizationE-mail
Dobritsa Dmitry BorisovichFSUI named after S.A.Lavochkin, Khimki, Moscow region, Russian Federationdobrica@laspace.ru
Всего: 1

References

Gerasimov A.V., Dobritsa D.B., Pashkov S.V., Khristenko Yu.F. Theoretical and experimental study of interaction of protective systems of cosmic station with natural and man-caused fragments // Международная конференция «X Забабахинские научные чтения (ЗНЧ
Герасимов А.В., Добрица Д.Б., Пашков С.В., Христенко Ю.Ф. Защита космических аппаратов от удара высокоскоростными частицами: сплошные, разнесенные и сеточные экраны // Труды Междунар. конф. XIII Харитоновские тематические научные чтения. «Экстремальные со
Герасимов А.В., Добрица Д.Б., Пашков С.В., Христенко Ю.Ф. Теоретико-экспериментальное моделирование эффективной защиты космических аппаратов от высокоскоростных осколков // Zbornik Radova Konferencije MIT 2011, Belgrad 2012, Serbia. С. 117-121.
Cour-Palais B. Hypervelocity impact in metals, glass and composites // Int. J. Impact Engineering. 1987. V. 5. P. 221-237.
Frate D.T., NahraH.K. Hypervelocity impact testing of nickel hydrogen battery cells // AIAA Space Programs and Technologies Conf., Huntsville, Alabama, AIAA 96-4292, September 1996.
Taylor E.A., Herbert M.K. Vaughan B.A.M., McDonnell J.A.M. Hypervelocity impact on carbon fibre reinforced plastic / aluminium honeycomb: comparison with whipple bumper shields // Int. J. Impact Engineering. 1999. V. 23. P. 883-894.
Lambert M. Hypervelocity impacts and damage laws // Ad. Space Res. 1997. V. 19(2). P. 369-378.
Jex D.W., Miller A.M., Mackay C.A. The Characterictics of Penetration for a Double-Sheet Structure with Honeycomb. NASA TM X-5397, 1970.
Taylor E.A., Herbert M.K., Gardner D.J., Kay L. Hypervelocity impact on carbon fibre reinforced plastic (CFRP) / aluminium honeycomb // Proc. of the Institute of Mechanical Engineers. 1997. 211 (Part G). P. 355-363.
Sennett R.E., Lathrop B.L. Effects of hypervelocity impact on honeycomb structures // J. Spacecraft and Rockets. 1968. V. 5. P. 1496-1497.
Отчет об опытно-конструкторской работе «Экспериментальное определение предельной стойкости элементов конструкций КА «Спектр-УФ» и противометеорной защиты при воздействии высокоскоростных частиц (итоговый). Научно-исследовательский институт прикладной мате
Terrillion F., Warren H.R., and Yelle M.J. Orbital debris shielding design of the radarsat satellite // IAF-91-283, 42nd Congress of the International Astronautical Federation, 5-11 October, Montreal, Canada, 1991.
Christiansen E.L. Design practices for spacecraft meteoroid/debris (M/D) protection // Proc. 1998 Hypervelocity Shielding Workshop, IAT Catalog number IAT.MG 0004, Institute for Advanced technology, The University of Texas at Austin, 1999.
Turner R.J., Taylor E.A., McDonnell J.A.M., et al. Cost effective honeycomb and MLI debris shields for unmanned spacecraft // Int. J. Impact Engineering. 2001. V. 26.
 Theoretical-experimental estimate of resistance of spacecraft honeycomb panels upon impacts from meteoroids and space debris | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2014. № 2 (28).

Theoretical-experimental estimate of resistance of spacecraft honeycomb panels upon impacts from meteoroids and space debris | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2014. № 2 (28).

Download file