Finite volume schemes for the electrical impedance tomography problem | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2014. № 3(29).

Finite volume schemes for the electrical impedance tomography problem

In electrical impedance tomography, the currents are applied on electrodes placed on the surface of an object. The electrical conductivity is reconstructed in the interior of the object using voltage measurements on its surface. Knowing the conductivity distribution provides information about the internal object's structure which can be useful for medical and industry applications. Instability of the EIT problem causes difficulties challenging a successful reconstruction. Since a static EIT imaging is sensitive to the measurement noise and approximation errors, this paper addresses the problem of reducing the latter. The finite volume method is presented for solving the EIT forward problem, which is a significant part of the inverse problem. Finite volume schemes were obtained for unstructured grids. The schemes were derived for three kinds of finite volumes, which can be considered relative to triangulation of the domain. The approaches are based on vertex-centered and cell-centered discretization, where the numerical solution is associated with mesh vertices or mesh elements, respectively. In the first case, a finite volume approximation was introduced on barycentric volumes and Dirichlet - Voronoi volumes on the assumption of a linear distribution of electric potential. Triangular finite volumes were utilized for approximation based on cell-centered discretization. Both cases suggested a piecewise constant conductivity distribution over grid cells. Numerical comparison for the obtained finite volume schemes was carried out on a test problem that can be solved analytically. The results were compared to a solution by the finite element method.

Download file
Counter downloads: 856

Keywords

электроимпедансная томография, метод конечных объёмов, метод конечных элементов, разностные схемы, неструктурированные сетки, electrical impedance tomography, finite volume method, finite element method, difference schemes, unstructured meshes

Authors

NameOrganizationE-mail
Sherina Ekaterina SergeevnaTomsk State Universitysherina@math.tsu.ru
Starchenko Aleksandr VasilyevishTomsk State Universitystarch@math.tsu.ru
Всего: 2

References

Пеккер Я.С., Бразовский К.С., Усов В.Ю. и др. Электроимпедансная томография. Томск: Изд-во НТЛ, 2004. 192 с.
Lionheart W., Polydorides N., Borsic A. Electrical Impedance Tomography: Methods, History and Applications. Manchester, 2004. 62 p.
Brown B.H. Electrical impedance tomography (EIT): a review // J. Med. Eng. Technol. 2003. V. 27. No. 3. P. 97-108. doi: 10.1080/0309190021000059687.
Holder D.S. Medical impedance tomography and process impedance tomography: a brief review // Meas. Sci. Technol. 2001. V. 12. P. 991-996.
Barber D.C., Brown B.H. Applied Potential Tomography // J. Phys. E: Sci. Instrum. 1984. V. 17. No. 9. P. 723-733. doi:10.1088/0022-3735/17/9/002.
Somersalo E., Cheney M., Isaacson D. Existence and uniqueness for electrode models for electric current computed tomography // SIAM J. Appl. Math. 1992. V. 52. No. 4. P. 10231040.
Шерина Е.С., Старченко А.В. Численный метод реконструкции распределения электрического импеданса внутри биологических объектов по измерениям тока на границе // Вестник Томского государственного университета. Математика и механика. 2012. № 4(20). С. 36-49.
Dong G., Zou J., Bayford R.H., et al. The comparison between FVM and FEM for EIT forward problem // IEEE Trans. Magnetics. 2005. V. 41. No. 5. P. 1468-1471. doi: 10.1109/ TMAG.2005.844558.
Li J., Yuan Y. Numerical simulation and analysis of generalized difference method on triangular networks for electrical impedance tomography // App. Math. Modelling. 2009. V. 33. No. 5. P. 2175-2186.
Тихонов А.Н., Самарский А.А. Уравнения математической физики. М.: Наука, 1977. 735 с.
Марчук Г.И. Методы вычислительной математики. М.: Наука, 1989. 608 с.
Крылов В.И., Бобков В.В., П Монастырный.И. Вычислительные методы. М.: Наука, 1977. 399 с.
Isaacson D. Distinguishability of conductivities by electric current computed tomography // IEEE Trans. Medical Imaging. 1986. V. 5. No. 2. P. 91-95.
Vauhkonen M. Electrical impedance tomography and prior information. PhD. Kuopio, 1997. 110 p.
Рояк М.Э., Соловейчик Ю.Г., Шурина Э.П. Сеточные методы решения краевых задач математической физики. Новосибирск: Изд-во НГТУ, 1998. 120 с.
 Finite volume schemes for the electrical impedance tomography problem | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2014. № 3(29).

Finite volume schemes for the electrical impedance tomography problem | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2014. № 3(29).