On a class of reserved devices | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2014. № 4(30).

On a class of reserved devices

In this paper, we consider three models of redundancy: (1) By use of the mean time between system failures on a finite interval; (2) By use of the mean time between system failures on a infinite interval; (3) By use of the system reliability on a finite interval. For all three models, the redundancy criterion has the following form: k -m T(k,r) =£ C[p 'q'T(r - i). (1) i=0 Using the sigma-operator turns out to be an effective way for proving many properties of optimal strategies. Let T(r) > 0 and T(r) increase. The following properties are proved: T(r + 2) < T(r +1) T(r +1) T(r) ' Under more restrictive conditions, this inequality was obtained in the thesis of L.V. Ushakova. (4) The function ln T(r) is convex; (5) T(k +1,r) - T(k,r) increases with an increase in r. To find the optimal strategy, a simplified algorithm is obtained using the properties. This algorithm is based on a modification of the Bellman dynamic programming method mentioned in V.V. Travkina's work. The essence of the algorithm is as follows. (1) If there are m elements, then we have k (m) = m. For each model, T(m) is calculated. (2) All further calculations for the three models are similar. Then it is necessary to calculate the values of the function T(r) by means of its previous values using the formula 1 k -m T(k, r) =--- X Cip qr (r - i), (2) 1 - p 1=1 (3) Suppose that k (m), k (m + 1),...k (r-1), T(m), T(m+1), ... , T(r-1) have already calculated. To find k (r), we need to calculate k (r- 1) and k (r-1)+1. Then, using (2), we calculate T(k (r- 1), r) and T(k (r- 1), r) and compare them. If T(k (r-1), r) > T(k (r-1)+1, r) then k (r) = k (r-1) and T(r) = T(k (r-1), r). If T(k (r-1)+1, r) > T(k (r-1), r) then k (r) = k (r-1)+1, and T(r) = T(k (r-1)+1, r).

Download file
Counter downloads: 359

Keywords

резервирование, система, надёжность, стратегия, среднее время безотказной работы, модель, критерий оптимизации, сигма-оператор, промежуток К -постоянства, redundancy, system, reliability, strategy, mean time between failures, optimization criterion, model, sigma-operator, K -constancy interval

Authors

NameOrganizationE-mail
Gubin Vladimir NikolaevichTomsk State University; Tomsk Polytechnic Universityvovantus@sibmail.com
Pestov German GavrilovichTomsk State Universitygpestov@mail.ru
Всего: 2

References

Райкин А.Л. Элементы теории надёжности технических систем. М.: Сов. радио, 1978.
Герцбах И.Б. Об оптимальном управлении включением резервных элементов // Изв. АН СССР. Техническая кибернетика. 1966. № 5.
Томиленко В.А. Об одной задаче динамического резервирования // Изв. АН СССР. Техническая кибернетика. 1975. № 4.
Пестов Г.Г., Ушакова Л.В. Исследование оптимальных стратегий в задаче динамического резервирования // Изв. АН СССР. Техническая кибернетика. 1973. № 5.
Конев В.В. Об оптимальном включении резервных элементов // Изв. АН СССР. Техническая кибернетика. 1974. № 4. С. 75-83.
Конев В.В. Об оптимальном программном включении резервных элементов // Изв. АН СССР. Техническая кибернетика. 1975. № 3. С. 109-117.
Конев В.В., Овчинников А.В. Оптимальное резервирование группы однотипных элементов // Изв. АН СССР. Техническая кибернетика. 1976. № 4. С. 75-84.
Renyi A. Wahrscheinlichkeitsrechnung. Berlin: VEB Deutscher Verlag der Wissenschaften, 1966.
Беллман Р., Дрейфус С. Прикладные задачи динамического программирования. М.: Наука, 1965. 458 с.
 On a class of reserved devices | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2014. № 4(30).

On a class of reserved devices | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2014. № 4(30).

Download full-text version
Counter downloads: 811