SP-groups with clean endomorphism rings | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2014. № 4(30).

SP-groups with clean endomorphism rings

The notion of a clean ring was introduced by W.K. Nicholson in 1977 as an example of a ring with idempotents, that can be lifted modulo any left (right) ideal [1]. The class of clean rings is a proper subclass of the class of exchange rings [1, 2]. In the case when R is an endomorphism ring of some module, new descriptions of the cleanness property appear. They can be useful for the study of conditions for cleanness of a ring R. This subject recently attracted attention of many specialists [5, 6]. In this work, some aspects of cleanness of endomorphism rings of SP-groups are considered. These groups are one of classes of mixed Abelian groups [7, 8]. The cleanness of endomorphism rings of self-small SP-groups is proved. Some sufficient conditions are found for the converse proposition to hold. The structure of endomorphism rings of rank one SP-groups with cyclic р-groups is described and their cleanness is proved, the description of Jacobson radical of endomorphism rings of such groups is found. Some sufficient conditions of cleanness for endomorphisms of finite rank SP-groups with cyclic р-groups are obtained.

Download file
Counter downloads: 317

Keywords

смешанная абелева группа, SP-группа, чистое кольцо, кольцо эндоморфизмов, mixed Abelian group, SP-group, clean ring, endomorphism ring

Authors

NameOrganizationE-mail
Sorokin Konstantin SergeevichTomsk State UniversitySorokin_k@list.ru
Всего: 1

References

Nicholson W.K. Lifting idempotents and exchange rings // Trans. Amer. Math. Soc. 1977. No. 229. P. 269-278.
Чехлов А.Р. Об абелевых группах с нормальным кольцом эндоморфизмов // Алгебра и логика. 2009. Т. 48. № 4 С. 520-539.
Handelman D. Perspectivity and cancellation in regular rings // J. Algebra. 1977. No. 48. P. 1-16.
Camillo V.P., Khurana D. A characterization of unit-regular rings // Commun. Algebra. 2001. V. 29. No. 6. P. 2293-2295.
Han J., Nicholson W.K. Extension of clean rings // Commun. Algebra. 2001. V. 29. No. 6. P. 2589-2595.
Nicholson W.K., Varadarajan K., Zhou Y. Clean endomorphism rings // Arch. Math. 2004. No. 83. P. 340-343.
Camillo V.P., Khurana D., Lam T.Y., Nicholson W.K., Zhou Y. Continuous modules are clean // J. Algebra. 2006. No. 304. P. 94-111.
Goldsmith B., Vamos P. A note on clean abelian groups // Rendiconti del Seminario Matematico della Universita di Padova. 2007. No. 117. P. 181-191.
Сорокин К.С. Вполне разложимые абелевы группы с чистыми кольцами эндоморфизмов // Фундаментальная и прикладная математика. 2011/2012. Т. 17. № 8. С. 105-108.
Крылов П.А. Об одном классе смешанных абелевых групп // Вестник ТГУ. 2000. Т. 269. С. 29-34.
Крылов П.А. Радикал Джекобсона кольца эндоморфизмов абелевой группы // Алгебра и логика. 2004. Т. 43. № 1. С. 60-76.
Крылов П.А. Радикалы колец эндоморфизмов абелевых групп // Вестник Томского государственного университета. Математика и механика. 2007. № 1. С. 17-27.
Крылов П.А., Михалев А.В., Туганбаев А.А. Абелевы группы и их кольца эндоморфизмов М.: Факториал Пресс, 2006.
 SP-groups with clean endomorphism rings | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2014. № 4(30).

SP-groups with clean endomorphism rings | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2014. № 4(30).

Download full-text version
Counter downloads: 811