Two-phase fluid filtration in nonuniform media on clusters | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2014. № 4(30).

Two-phase fluid filtration in nonuniform media on clusters

This work is related to the simulation of oil recovery. At the same time, it is an attempt to come closer to a correct model that describes the flow of a fluid through a porous medium. To examine the effect of porosity and permeability on the motion of fluids in rocks, an algorithm and its program realization has been constructed. The key point within the scope of this work is the implementation of the problem on clusters which consist of hundreds or thousands of nodes using the MPI technology. The algorithm shows high scalability and efficiency from the standpoint operations and data exchange on multiprocessor systems. We also present numerical results that show the efficiency of the implemented algorithm on a cluster with several hundreds of cores. It follows from the results that the time of water breakthrough in production wells varies depending on the location of the inhomogeneities. Therefore, this work is of great practical importance.

Download file
Counter downloads: 389

Keywords

двухфазная фильтрация, насыщенность, метод конечных элементов, параллельное программирование, two-phase fluid filtration, saturation, finite element method, parallel computing

Authors

NameOrganizationE-mail
Berveno Ekaterina ViktorovnaInstitute of Computational Mathematics and Mathematical Geophysics, Siberian Branch of the Russian Academy of Sciences (Novosibirsk)ekaterina.berveno@gmail.com
Kalinkin Alexander AleksandrovichNovosibirsk State Universityalexander.a.kalinkin@intel.com
Laevskii Yuri MironovichInstitute of Computational Mathematics and Mathematical Geophysics, Siberian Branch of the Russian Academy of Sciences (Novosibirsk)laev@labchem.sscc.ru
Всего: 3

References

Laevsky Yu.M., Popov P.E., Kalinkin A.A. Simulation of two-phase fluid filtration by mixed finite element method // Matem. Mod. 2010. V. 22. No. 3. P. 74-90.
Popov P.E., Kalinkin A.A. The method of separation of variables in a problem with a saddle point // Russ. J. Numer. Anal. Math. Model. 2008. V. 23. No. 1. P. 97-106.
Баренблатт Г.И., Ентов В.М., Рыжик В.М. Движение жидкостей и газов в природных пластах. М.: Недра, 1984. С. 104-112, 147-149.
Brezi F. and Fortin M. Mixed and Hybrid Finite Element Methods. New York: Springer-Verlag, 1991.
Демидов Г.В., Новиков Е.А. Экономичный алгоритм интегрирования нежестких систем обыкновенных дифференциальных уравнений // Численные методы в математической физике. Новосибирск: ВЦ СО СССР, 1979. С. 69-83.
 Two-phase fluid filtration in nonuniform media on clusters | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2014. № 4(30).

Two-phase fluid filtration in nonuniform media on clusters | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2014. № 4(30).

Download full-text version
Counter downloads: 811