Molecular dynamics modeling of nanofluid separation in nanomembranes
Nanofluids separation processes in nanomem-branes have been simulated by the molecular dynamics method. The porous membrane was modeled by regular packing of hard spheres of the same radius. In this paper, the modeling results are presented for a system in which the grains and nanoparticles have diameters of 4d and 5d, respectively, where d is the diameter of the carrier fluid molecule. The impact of the membrane porosity, their granule packing type, pore sizes, nanoparticle diameters, and density of the carrier gas on the separation rate was studied. The nanofluid separation efficiency was determined by the speed of molecule transport through the porous membrane. The total mass flux is the sum of the diffusion and convective fluxes. It was established that the convective flux exceeds the diffusion one by two orders of magnitude. Thus molecule transport through the membrane is basically determined by the convective transport. The dependence of the separation rate on the porosity is nonlinear and it is described well by the quadratic function of the volume concentration of the nanoparticles. The greatest separation rate is provided by the membrane with the body-centered cubic packing of the grains. The filtration is stopped only in the case where the size of the porous media throats is on the order of the size of filtered molecules. It is shown that the separation rate can be controlled by varying parameters of the filtered nanofluid and membrane.
Keywords
наночастицы,
пористая среда,
мембрана,
наножид-кость,
молекулярная динамика,
разделение наножидкости,
nanoparticles,
porous medium,
nanofluid separation,
membrane,
nanofluid,
molecular dynamics,
nanofluid separationAuthors
Rudyak Valery Yakovlevich | Novosibirsk State University of Architecture and Civil Engineering | valery.rudyak@mail.ru |
Andryushchenko Vladimir Andreevich | Novosibirsk State University of Architecture and Civil Engineering; Russian Technology Center of Baker Hughes | vladimir.andrushenko@gmail.com |
Всего: 2
References
Bernardo P., Drioli E., Golemme G. Membrane Gas Separation: A Review/State of the Art // Ind. Eng. Chem. Res. 2009. V. 48. P. 638-4663.
Chen F., Mourhatch R., Tsotsis T.T., Sahimi M. Pore network model of transport and separation of binary gas mixture in nanoporous membranes // J. Membrane Science. 2008. V. 315. P. 48-57.
Rajabbeigi N., Tsotsis T.T., Sahimi M. Molecular pore-network model for nanoporous materials. II: Application to transport and separation of gaseous mixtures in silicon-carbide membranes // J. Membrane Science. 2009. V. 345. P. 323-330.
Норман Г.Э., Стегайлов В.В. Стохастическая теория метода классической молекулярной динамики // Математическое моделирование. 2012. Т. 24, № 6. С. 3-44.
Норман Г.Э., Писарев В.В. Молекулярно-динамический анализ кристаллизации переохлажденного расплава алюминия // Журнал физической химии. 2012. Т. 86. № 9. С. 1578-1583.
Бубенчиков М.А., Потекаев А.И., Бубенчиков А.М. Три фундаментальные задачи молекулярной статистики // Изв. вузов. Физика. 2013. Т. 56 (3). С. 94-100.
Xu L., Sahimi M., Tsotsis T.T. Nonequilibrium molecular dynamics simulation of transport and separation of gas mixtures in nanoporos materials // Physical Review E. 2000. V. 62. № 5. P. 6942-6948.
Jia W., Murad S. Separation of gas mixtures using a range of zeolite membranes: A molecular-dynamics study // J. Chemical Physics. 2005. V. 122, 234708. P. 1-11.
Wu Z., Liu Z., Wang W., Fan Y., Xu N. Non-equilibrium molecular dynamics simulation on permeation and separation of H2/CO in nanoporous carbon membranes // Separation and Purification Technology. 2008. V. 64. P. 71-77.
Kozachok M.V. Equilibrium molecular dynamics and mean first passage time analysis of the separation of exhaust gases at high temperatures by silica nanoporous membranes // Modelling and Simulation in Materials Science and Engineering. 2010. V. 18, 025009.
Рудяк В.Я., Белкин А.А. Моделирование коэффициентов переноса // Наносистемы: Физика, Химия, Математика. 2010. Т. 1. № 1. С. 156-177.
Rudyak V.Ya., Belkin A.A. Transport processes of nanoparticles in gases and liquids // Advanced Structured Materials. 2013. V. 4. P. 135-168.
Rudyak V.Ya. Viscosity of nanofluids. Why it is not described by the classical theories // Advances in Nanoparticles. 2013. V. 2. P. 266-279.
Рудяк В.Я., Харламов Г.В., Белкин А.А. Автокорреляционная функция скорости наночастицы в молекулярной системе твердых сфер // Письма в ЖТФ. 2000. Т. 26. № 13. С. 29-36.
Рудяк В.Я., Харламов Г.В., Белкин А.А. Диффузия наночастиц и макромолекул в плотных газах и жидкостях // ТВТ. 2001. Т. 31, № 2. С. 283-291.
Андрющенко В.А., Рудяк В.Я. Моделирование самодиффузии молекул флюида в пористых средах // Докл. АН ВШ РФ. 2010. Т. 15. № 2. С. 6-13.
Andryuschenko V.A., Rudyak V.Ya. Media self-diffusion coefficient of molecular fluid in porous media // Deffect and Diffusion Forum. 2011. V. 312-315. P. 417-422.
Димов С.В., Кузнецов В.В., Рудяк В.Я., Тропин Н.М. Экспериментальное изучение фильтрации микросуспензии в высопроницаесой пористой среде // Изв. РАН. Механика жидкости и газа. 2012. № 2. С. 52-61.