On two approaches to modelling the inflow boundary | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2014. № 6 (32).

On two approaches to modelling the inflow boundary

Two approaches to modeling inflow boundary through solving one-dimensional equations of gas dynamics by means of boundary conditions and right-hand sides in the equations involving the Dirac delta function are discussed. Comparisons of numerical solutions of one-dimensional stationary equations of gas dynamics with the exact ones, as well as between numerical solutions of unsteady gas dynamics equations are performed for two approaches. Three kinds of boundary conditions are considered, namely, a constant inflow, pressure-dependent inflow, and inflow varying in time. It is shown that the numerical solutions obtained based on the finite-difference scheme of first order accuracy by the two considered approaches converge to each other with the mesh refinement. The numerical solution for the steady state problem coincides with the analytical one if the pressure at the boundary cell face is set equal to the pressure in the center of the boundary cell.

Download file
Counter downloads: 564

Keywords

inflow boundary, numerical modeling, дельта-функция Дирака, газовая динамика, граница газоприхода, численное моделирование, gas-dynamics, Dirac delta-function

Authors

NameOrganizationE-mail
Minkov Leonid LeonidovichTomsk State Universitylminkov@ftf.tsu.ru
Shrager Ernst RafailovichTomsk State Universitysher@ftf.tsu.ru
Kiryushkin Aleksandr EvgenievichTomsk State Universitysashakir94@mail.ru
Всего: 3

References

Бутковский А.Г. Характеристики систем с распределенными параметрами. М.: Наука, 1979. 224 с.
Van Leer B. Flux-vector splitting for the euler equations // Lecture Notes in Physics. 1982. Vol. 170. P. 507-512.
Годунов С.К. Численное решение многомерных задач газовой динамики. М.: Наука, 1976. 400 с.
Ерохин Б.Т. Теория внутрикамерных процессов и проектирование РДТТ: учебник для высших учебных заведений. М.: Машиностроение, 1991. 560 с.
Ерохин Б.Т., Липанов А.М. Нестационарные и квазистационарные режимы работы РДТТ. М.: Машиностроение, 1977. 200 с.
Рынков А.Д. Математическое моделирование газодинамических процессов в каналах и соплах. Новосибирск: Наука, 1988. 222 с.
Райзберг Б.А., Ерохин Б.Г., Самсонов К.П. Основы теории рабочих процессов в ракетных системах на твердом топливе. М.: Машиностроение, 1972. 383 с.
 On two approaches to modelling the inflow boundary | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2014. № 6 (32).

On two approaches to modelling the inflow boundary | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2014. № 6 (32).