On two-dimensional hyperbolic equations with power-law nonlinearity in the derivatives | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2015. № 1(33).

On two-dimensional hyperbolic equations with power-law nonlinearity in the derivatives

In recent years, extensive studies of nonlinear hyperbolic equations are carried out. Special attention is focused on equations of the Liouville type. However, of special interest is the study of nonlinear hyperbolic equations of a more general form, including those containing power-law nonlinearities in the derivatives. They are considered in this work. To study two-dimensional nonlinear hyperbolic equations containing power-law nonlineari-ties in the derivatives and a nonlinearity of an arbitrary type of an unknown function, the method of functional separation of variables is applied. For this class of equations, solutions of the traveling wave type and solutions depending on power and exponential functions of independent variables (in particular, self-similar solutions) were obtained, as well as solutions containing arbitrary functions of these variables. Solutions for regular and special values of parameters characterizing the nonlinearity have been obtained. The obtained solutions are valid for a wide class of two-dimensional hyperbolic equations with a power-law nonlinearity in derivative. The results can be generalized for multidimensional nonlinear hyperbolic equations with power-law nonlinearities.

Download file
Counter downloads: 393

Keywords

power-law non-linearity, functional separation of variables, nonlinear hyperbolic equation, степенная нелинейность, функциональное разделение переменных, нелинейное гиперболическое уравнение

Authors

NameOrganizationE-mail
Rakhmelevich Igor VladimirovichNizhny Novgorod State Universityigor-kitpd@yandex.ru
Всего: 1

References

GrundlandA.M., InfeldE. A family of non-linear Klein - Gordon equations and their solutions // Journal of Mathematical Physics. 1992. V. 33. No. 7. P. 2498-2503.
Miller J. (Jr.), Rubel L.A. Functional separation of variables for Laplace equations in two dimensions // Journal of Physics A. 1993. V.26. P.1901-1913.
Zhdanov R.Z. Separation of variables in the non-linear wave equation // Journal of Physics A. 1994. V. 27. P. L291-L297.
Рахмелевич И.В. Об уравнениях математической физики, содержащих мультиоднородные функции от производных // Вестник Томского государственного университета. Математика и механика. 2014. № 1(27). С. 42-50.
Рахмелевич И.В. О применении метода разделения переменных к уравнениям математической физики, содержащим однородные функции от производных. // Вестник Томского государственного университета. Математика и механика. 2013. № 3(23). С. 37-44.
Полянин А.Д., Журов А.И. Обобщенное и функциональное разделение переменных в математической физике и механике// Доклады РАН. 2002. Т. 382. № 5. С.606-611.
Полянин А.Д., Зайцев В.Ф Справочник по нелинейным уравнениям математической физики: точные решения. М.: Физматлит, 2002. 432 с.
Кузнецова М.Н. О нелинейных гиперболических уравнениях, связанных дифференциальными подстановками с уравнением Клейна - Гордона // Уфимский математический журнал. 2012. Т. 4. № 3. С. 86-103.
Жибер А.В., Соколов В.В. Точно интегрируемые гиперболические уравнения лиувиллевского типа. // Успехи математических наук. 2001. Т. 56. № 1. С. 63-106.
 On two-dimensional hyperbolic equations with power-law nonlinearity in the derivatives | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2015. № 1(33).

On two-dimensional hyperbolic equations with power-law nonlinearity in the derivatives | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2015. № 1(33).

Download full-text version
Counter downloads: 903