Evolution of a thermal plume in a thin vertical layer
An experimental investigation of the propagation of a thermal plume in a thin liquid layer under the influence of a point heating from below is carried out. The temperature field was visualized using an IR camera. The distribution of heat on the interface between salt glass and fluid was measured. Stages of the evolution of the thermal plume are described. A qualitative agreement with the known mechanism of motion of an axisymmetric plume was shown. The influence of a warm heat source on the speed of the thermal wave front was investigated. The necessity of taking into account this effect in the case of the slow development of the plume the duration of which exceeds the relaxation time of the heater by several times is noted. We have obtained the power law connecting the velocity of the wave front and effective heat output. The results are compared with experimental works of other authors, as well as with the proposed theory for the motion of the wave front away from the heat source and boundaries of the cavity. It is shown that the propagation velocity of the thermal front in a thin layer has a substantially lower rate in the absence of its lateral boundaries.
Keywords
узкий вертикальный слой,
локальный подогрев,
тепловой плюм,
thin vertical layer,
local heat source,
thermal plumeAuthors
Babushkin Igor' Arcad'evich | Perm State University | lapans@yandex.ru |
Kondrashov Aleksandr Nicolaevich | Perm State University | akon.psu@yandex.ru |
Rybkin Konstantin Anatol'evich | Perm State University | k.rybkin@gmail.com |
Sboev Ivan Olegovich | Perm State University | ivan-sboev@yandex.ru |
Всего: 4
References
Kaminski E., Jaupart C. Laminar starting plumes in high-Prandtl number fluids // J. Fluid Mech. 2003. V. 478. P. 287-298.
Lithgow-Bertelloni C., Richards M.A., Conrad C.P. and Griffiths R.W. Plume generation in natural thermal convection at high Rayleigh and Prandtl numbers // J. Fluid Mech. 2001. V. 434. P. 1-21.
Turner J.S. Buoyant plumes and thermals // Annual Review of Fluid Mechanics. 1969. V. 1. No. 1. P. 29-44.
Shlien D.J., Thompson D.W. Some experiments on the motion of an isolated laminar thermal // Journal of Fluid Mechanics. 1975. V. 72. No. 1. P. 35-47.
Бабушкин И.А., Демин В.А., Кондратов А.Н., Пепеляев Д.В. Тепловая конвекция в ячейке Хеле - Шоу при действии центробежных сил // Изв. РАН. Механика жидкости и газа. 2012. №. 1. С. 14-25.
Eckert K., Grahn A. Plume and finger regimes driven by an exothermic interfacial reaction // Physical Review Letters. 1999. V. 82. No. 22. P. 4436-4439.
Shlien D.J. Method for heat injection into a liquid // Review of Scientific Instruments. 2008. V. 48. No. 9. P. 1152-1153.
Shlien D.J. Some laminar thermal and plume experiments // Physics of Fluids (1958-1988). 2008. V. 19. No. 8. P. 1089-1098.
Гаврилов К.А., Демин В.А., Попов Е.А. Режимы всплытия тепловых плюмов в вертикальном слое // Вычислительная механика сплошных сред. 2013. Т. 6. № 3. С. 261-268.
Lappa M. Thermal Convection: Patterns, Evolution and Stability. UK: Wiley, 2010. 670 p.
Majumder C.A., Hier Yuen D.A., Vincent A.P. Four dynamical regimes for a starting plume model // Physics of Fluids (1994-present). 2004. V. 16. No. 5. P. 1516-1531.
Batchelor G.K. Heat convection and buoyancy effects in fluids // Quarterly Journal of the Royal Meteorological Society. 1954. V. 80. No. 345. P. 339-358.
Shlien D.J. Transition of the axisymmetric starting plume cap // Physics of Fluids (19581988). 1978. V. 21. No. 12. P. 2154-2158.
Moses E. et al. An experimental study of laminar plumes // Journal of Fluid Mechanics. 1993. V. 251. P. 581-601.
Worster M. Grae. The axisymmetric laminar plume: asymptotic solution for large Prandtl number // Stud. Appl. Maths. 1986. V. 75. P. 139-152.
Бабушкин И.А., Кондрашов А.Н., Сбоев И.О. Развитие конвективного факела в вертикальном слое // Вестник Пермского университета. Сер. Физика. Пермь: Изд-во Перм. ун-та, 2012. Вып. 4 (22). С. 101-105.
Davaille A. et al. Anatomy of a laminar starting thermal plume at high Prandtl number // Experiments in Fluids. 2011. V. 50. No. 2. P. 285-300.