Residual properties of abelian groups | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2015. № 3(35).

Residual properties of abelian groups

Let п be a set of primes. For Abelian groups, the necessary and sufficient condition to be a virtually residually finite п-group is obtained, as well as a characterization of potent Abelian groups. Recall that a group G is said to be a residually finite п-group if for every nonidentity element a of G there exists a homomorphism of the group G onto some finite п-group such that the image of the element a differs from 1. A group G is said to be a virtually residually finite п-group if it contains a finite index subgroup which is a residually finite п-group. Recall that an element g in G is said to be п-radicable if g is an mth power of an element of G for every positive п-number m. Let A be an Abelian group. It is well known that A is a residually finite п-group if and only if A has no nonidentity п-radicable elements. Suppose now that п does not coincide with the set П of all primes. Let п' be the complement of п in the set П. And let T be a п'-component of A, i.e., T be a set of all elements of A whose orders are finite п'-numbers. We prove that the following three statements are equivalent to each other: (1) the group A is a virtually residually finite п-group; (2) the subgroup T is finite and the quotient group A / T is a residually finite п-group; (3) the subgroup T is finite and T coincides with the set of all п-radicable elements of A.

Download file
Counter downloads: 390

Keywords

абелева группа, финитно аппроксимируемая группа, Abelian group, residually finite group

Authors

NameOrganizationE-mail
Azarov Dmitrii NikolaevichIvanovo State Universityazarovdn@mail.ru
Всего: 1

References

Мальцев А.И. Об изоморфном представлении бесконечных групп матрицами // Мат. сб. 1940. Т. 8. № 3. С. 405-422.
Hirsh K.A. On infinite soluble groups // J. London Math. Soc. 1952. V. 27. P. 81-85.
Шмелькин А.Л. Полициклические группы // Сиб. мат. ж. 1968. Т. 9. С. 234-235.
Мальцев А.И. О гомоморфизмах на конечные группы // Учен. зап. Иван. гос. пед. ин-та. 1958. Т. 18. Вып. 5. С. 49-60.
Азаров Д.Н. Некоторые аппроксимационные свойства групп конечного ранга // Модел. и анализ информ. систем. 2014. Т. 21(2). С. 50-55.
Lennox J., Robinson D. The theory of infinite soluble groups. Oxford.: Clarendon press. 2004.
Азаров Д.Н. Аппроксимируемость разрешимых групп конечного ранга некоторыми классами конечных групп // Известия вузов. Математика. 2014. № 8. С. 18-29.
Азаров Д.Н. Некоторые аппроксимационные свойства разрешимых групп конечного ранга // Чебышевский сборник. 2014. Т. 15. № 1(49). С. 7-18.
Каргаполов М.И, Мерзляков Ю.И. Основы теории групп. М.: Наука. 1972.
 Residual properties of abelian groups | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2015. № 3(35).

Residual properties of abelian groups | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2015. № 3(35).

Download full-text version
Counter downloads: 759