On mechanisms of the hydrate shell growth on the surface of supernatant gas bubbles
A theoretical model of the methane bubble migration under conditions of the hydrate development in an upward flow of water in a vertical pipe is proposed and constructed. We consider two limiting mechanisms that determine the hydrate development kinetics in the process of gas bubble floating-up. If the hydrate development intensity is determined by the heat removal from the bubble surface by a liquid, the height at which the hydrate formation process terminates amounts to fractions of meters; in the case where the process is limited by gas diffusion through the hydrated peel, tens of meters. The critical mass flow rates of gas and water needed to complete the process of hydrate formation have been obtained. It is found that the migration of gas bubbles in the reactor is accompanied by two possible modes of the hydrate development depending on the initial mass flow rate of water: gas bubbles go over into the hydrated state either completely as separate inclusions or partially with the formation of bubbles with a hydrate shell. The influence of the initial mass flow of water on the dynamics of the hydrate formation process is analyzed at different values of hydrostatic pressure (or gas source operation depths).
Keywords
гидратная оболочка,
вода,
газ,
трубчатый канал,
тепло-съем,
диффузия,
hydrate shell,
water,
gas,
tubular reactor,
heat removal,
diffusionAuthors
Shagapov Vbdisbv Shnihulngzomovich | Birsk branch of Bashkir State University | Shagapov@rambler.ru |
Chiglintseva Angelina Sergeevna | Birsk branch of Bashkir State University | changelina@rambler.ru |
Rusinov AlekseyAleks«ndrovich | Birsk branch of Bashkir State University | irtysh2009@mail.ru |
Всего: 3
References
Souter E.J. et «l. Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles // Earth and Planetary Science Letters. 2006. No. 243(3-4). P. 354.
Moksimov A.O., SosedkoE.V. Dynamics of sea bubbles covered by a hydrate skin // XVI Session of the Russian Acoustical Society, Moscow. November 14-18. 2005. P. 459.
Meckel M. et «l. Rising methane gas bubbles form massive hydrate layers at the seafloor // Geochimica et Cosmochimica Acta. 2004. V. 68. No. 21. P. 4335.
Егоров А.В., Нигматулин Р.И., Рожков А.Н. Переход глубоководных метановых пузырей в твердые гидратные формы // Препринт ИПМех РАН № 1038. 2013.
Greinert J. et al. 1300-m-high rising bubbles from mud volcanoes at 2080m in the Black Sea: Hydroacoustic characteristics and temporal variability // Earth and Planetary Science Letters. 2006. V. 244. P. 1.
Romer M. et al. Geological control and magnitude of methane ebullition from a high-flux seep area in the Black Sea - the Kerch seep area // Marine Geology. 2012. No. 319-322. P. 57.
Romer M. et al. The role of gas bubble emissions at deep-water cold seep systems: an example from the Makran continental margin, offshore Pakistan // Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011), Edinburgh. Scotland. United Kingdom. July 17-21. 2011.
Skarke A. et al. Widespread methane leakage from the sea floor on the northern US Atlantic margin // Nature Geoscience. September 2014. V. 7. P. 657. DOI: 10.1038/NGE02232
Gent Z.T. et al. A water column study of methane around gas flares located at the West Spitsbergen continental margin // Continental Shelf Research. 2014. V. 72. P. 107.
Rehder G et al. Enhanced lifetime of methane bubble streams within the deep ocean // Geophysical Research Letters. 2002. No. 29. P. 21.
Smith A.J. et al. Thermogenic methane injection via bubble transport into the upper Arctic Ocean from the hydrate-charged Vestnesa Ridge, Svalbard // Geochemistry, Geophysics, Geosystems. May 2014. V. 15. I. 5. P. 1945.
McGinnis D.F. et al. Fate of rising methane bubbles in stratified waters: How much methane reaches the atmosphere? // Journal of Geophysical Research. 2006. V. 111. P. 382.
Власов В.А. Диффузионно-феноменологическая теория образования гидрата из ледяного порошка // Теоретические основы химической технологии. 2012. Т. 46. № 6. С. 612 [Vlasov V.A. Phenomenological diffusion theory of formation of gas hydrate from ice powder // Theor. Found. Chem. Eng. 2012. V. 46. No. 6. P. 576].
Истомин В.А., Якушев В.С. Газовые гидраты в природных условиях. М.: Недра, 1992.
Мельников В.П., Нестеров А.Н. Применение ПАВ в технологиях транспорта и хранения природного газа в форме газогидратов // Фундаментальные проблемы разработки нефтегазовых месторождений, добычи и транспортировки углеводородного сырья: Материалы Междунар. конф. 2004. C. 98.
Нестеров А.Н. Применение поверхностно-активных веществ для интенсификации процессов образования гидратов в технологиях транспорта и хранения газа // Современное состояние газогидратных исследований в мире и практические результаты для газовой промышленности. М.: ООО ИРЦ Газпром. 2004. С. 66.
Шагапов В.Ш., Тазетдинов Б.И., Нурисламов О.Р. К теории образования и разложения газогидратных частиц в процессе их всплытия в воде // Вестник Томского государственного университета. Математика и механика. 2013. № 6 (26). С. 106-113.
Gumerov N.A., Chahine G.L. Dynamics of bubbles in conditions of gas hydrate formation // Fluid Dynamics. 1992. No. 5. P. 664.
Zheng L., Yapa P.D. A model for simulating deepwater oil and gas blowouts - Part I: Theory and model formulation // Journal of Hydraulic Research. 2002. V. 41. No. 4. P. 339.
Гумеров Н.А. Автомодельный рост слоя газового гидрата, разделяющего газ и жидкость // Механика жидкости и газа. 1992. № 5. С. 78.
Макогон Ю.Ф. Гидраты природных газов М.: Недра, 1974.
Luoa Y.-T. et al. Study on the kinetics of hydrate formation in a bubble column // Chemical Engineering Science. 2007. No. 62. P. 1000.
Нигматулин Р.И. Динамика многофазных сред. М.: Наука, 1987. Т. 1. 464 с.
Кутепов А.М., Полянин А.Д., Запрянов З.Д., Вязьмин А.В., Казенин Д.А. Химическая гидродинамика: Справочное пособие. М.: Квантум, 1996.
Shagapov V.Sh., Chiglintseva A.S., Kunsbaeva G.A. Теоретическое моделирование реактора, для процесса вымывания газа из гидрата // Теорет.основы хим. технологии. 2013. Т. 47. № 2. С. 208. [Shagapov V.Sh., Chiglintseva A.S., Kunsbaeva G.A. Theoretical modeling of a reactor for washing gas out of hydrates // Theor. Found. Chem. Eng. 2013. V. 47. No. 2. P. 159].