Co-Hopfian abelian groups | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2015. № 4(36).

Co-Hopfian abelian groups

In recent years, the interest in co-Hopfian algebraic systems has been growing steadily, with a great number of publications on the topic. However, the studies on co-Hopfian Abelian groups are represented only by individual works. It is therefore natural that there is quite a lot of interesting and important but still open questions related to co-Hopfian Abelian groups. One of these concerns the description of co-Hopfian groups in specific classes of Abelian groups. Consequently, the study of co-Hopfian Abelian groups and their properties is of particular interest. The first section of this paper contains a detailed review of known results on co-Hopfian algebraic systems, the primary emphasis being on co-Hopfian Abelian groups. Special attention is paid to co-Hopfian rings and modules. Some of the major results obtained by specialists in the last half-century are considered in detail. In the second section we obtain the general properties of co-Hopfian Abelian groups. For instance, we prove the co-Hopficity of direct summands of a co-Hopfian Abelian group. We point to one of the cases in which the co-Hopficity of an Abelian group should follow from the co-Hopficity of direct summands in the decomposition of this group. Finally, we give a necessary and sufficient condition of the co-Hopficity of a direct sum of an arbitrary number of Abelian groups on one assumption.

Download file
Counter downloads: 396

Keywords

абелева группа, кохопфова группа, прямая сумма, вполне инвариантная подгруппа, кольцо обобщенных матриц, Abelian group, co-Hopfian group, direct sum, fully invariant subgroup, generalized matrix ring

Authors

NameOrganizationE-mail
Kaigorodov Evgeniy V.Gorno-Altaisk State Universitygazetaintegral@gmail.com
Chedushev Sergei M.Gorno-Altaisk State UniversityS.chedushev@yandex.ru
Всего: 2

References

Baer R. Groups without proper isomorphic quotient groups // Bull. Amer. Math. Soc. 1944. V. 50. No. 4. P. 267-278.
Gonzales-Acuna F. and Whitten W. Embeddings of three-manifold groups // Mem. Amer. Math. Soc. 1992. V. 99. No. 474.
Потягайло Л., Ван Ш. О кохопфовости фундаментальных групп трехмерных многообразий // Алгебра и анализ. 1999. Т. 11. Вып. 5. С. 197-220.
Ohshika K. and Potyagailo L. Self-embeddings of Kleinian groups // Ann. Sci. Ecole Norm. Sup. 1998. V. 31. No. 3. P. 329-343.
Sela Z. Structure and rigidity in (Gromov) hyperbolic groups and discrete groups in rank 1 Lie algebras II // Geometric and Fundamental Analysis. 1997. V. 7. No. 3. P. 561-593.
Wang S.C. and Wu Y.Q. Covering invariant and cohopficity of 3-manifold groups // Proc. London Math. Soc. 1994. V. 68. P. 203-224.
Wang S.C. and Zhou Q. Embeddings of Kleinian groups with torsion // Acta Math. Sin. (Engl. Ser.). 2001. V. 17. No. 1. P. 21-34.
Deo S. and Varadarajan K. Hopfian and co-Hopfian groups // Bull. Austral. Math. Soc. 1997. V. 56. No. 1. P. 17-24.
Bell R.W. and Margalit D. Braid groups and the co-Hopfian property // J. Algebra. 2006. V. 303. No. 1. P. 275-294.
Li Y. On the Cohopficity of the Direct Product of Cohopfian Groups // Comm. Algebra. 2007. V. 35. No. 10. P. 3226-3235.
Endimioni G. Hopficity and co-Hopficity in soluble groups // Ukr. Math. J. 2004. V. 56. No. 10. P. 1594-1601.
Cain A.J. and Maltcev V. Hopfian and co-hopfian subsemigroups and extensions // Demonstratio Mathematica. 2014. V. 47. No. 4. P. 791-804.
Varadarajan K. Hopfian and co-Hopfian objects // Publ. Math. 1992. V. 36. P. 293-317.
Varadarajan K. Some recent results on Hopficity, co-Hopficity and related properties // International Symposium on Ring Theory. Birkhauser-Boston: Trends in Math., 2002. P. 371392.
Varadarajan K. Anti Hopfian and anti co-Hopfian modules // Contemporary Mathemathics. 2008. V. 456. P. 205-218.
Xue W. Hopfian modules and co-Hopfian modules // Comm. Algebra. 1995. V. 23. No. 4. P. 1219-1229.
Asgari Sh. On weakly co-Hopfian modules // B. Iran. Math. Soc. 2007. V. 33. No. 1. P. 65-72.
Haghany A. Hopficity and co-Hopficity for Morita contexts // Comm. Algebra. 1999. V. 27. P. 477-492.
Haghany A. and Vedadi M. R. Modules whose injective endomorphisms are essential // J. Algebra. 2001. V. 243. P. 765-779.
Asgari Sh., Haghany A. and Vedadi M. R. Quasi co-Hopfian modules and applications // Comm. Algebra. 2008. V. 36. No. 5. P. 1801-1816.
Asgari Sh. and Haghany A. Densely co-Hopfian modules // J. Algebra Appl. 2010. V. 9. No. 6. P. 989-1000.
Fan Y. and Liu Z. Co-Hopfian modules of generalized inverse polynomials // Acta Math. Sin. (Engl. Ser.). 2001. V. 17. No. 3. P. 431-436.
Gang Y. and Liu Z. On Hopfian and co-Hopfian modules // Vietnam J. Math. 2007. V. 35. No. 1. P. 73-80.
Gang Y. and Liu Z. On generalizations of Fitting modules // Indian J. Math. 2009. V. 51. No. 1. P. 85-99.
Gang Y. and Liu Z. Notes on generalized Hopfian and weakly co-Hopfian modules // Comm. Algebra. 2010. V. 38. P. 3556-3566.
Ghorbani A. and Haghany A. Generalized Hopfian modules // J. Algebra. 2002. V. 255. P. 324-341.
Ghorbani A. and Haghany A. Duality for weakly co-Hopfian and generalized Hopfian modules // Comm. Algebra. 2003. V. 31. P. 2811-2817.
Wang Y. Generalizations of Hopfian and co-Hopfian modules // Int. J. Math. Sci. 2005. V. 9. P. 1455-1460.
Divaani-Aazar K. and Mafi A. Hopfian and co-Hopfian modules over commutative rings // Vietnam J. Math. 2007. V. 35. No. 3. P. 275-283.
Hmaimou A., Kaidi A. and Campos E. S. Generalized Fitting modules and rings // J. Algebra. 2007. V. 308. P. 199-214.
Aydogdu P. and Ozcan A. Q. Semi co-Hopfian and semi Hopfian modules // East-West J. Math. 2008. V. 10. No. 1. P. 57-72.
Yan X.F. and Liu Z. Extensions of generalized Fitting modules // J. Math. Res. Exp. 2010. V. 30. No. 3. P. 407-414.
Jiao Y.J. Semi Hopfian and semi co-Hopfan modules over generalized power series rings // Int. J. Algebra. 2012. V. 6. No. 5-8. P. 209-218.
Wang X. and Li T. A Generalization of Weakly Co-hopfian Modules // Int. Math. Forum. 2014. V. 9. No. 6. P. 255-258.
Diallo E., Maaouia M. and Sanghare M. Hopfian Objects, Cohopfian Objects in the Category of Complexes of Left A-Modules // Int. Math. Forum. 2013. V. 8. No. 39. P. 1903-1920.
Diallo E., Maaouia M. and Sanghare M. Strongly Hopfian and Strongly Cohopfian Objects in the Category of Complexes of Left A-Modules // J. Math. Res. 2014. V. 6. No. 3. P. 81-90.
/rwin J. M. and Takashi J. A quasi-decomposable Abelian group without proper isomorphic quotient groups and proper isomorphic subgroups // Pacif. J. Math. 1969. V. 29. No. 1. P. 151-160.
Takashi J. and /rwin J.M. A quasi-decomposable Abelian group without proper isomorphic quotient groups and proper isomorphic subgroups, 2 // J. Fac. Sci. Hokkaido Univ. 1969. V. 20. No. 4. P. 194-203.
Goldsmith B. and Gong K. On super and hereditarily Hopfian and co-Hopfian Abelian groups // Arch. Math. 2012. V. 99. No. 1. P. 1-8.
Goldsmith B. and Gong K. On adjoint entropy of Abelian groups // Comm. Algebra. 2012. V. 40. P. 972-987.
Goldsmith B. and Gong K. A note on Hopfian and co-Hopfian Abelian groups. Dublin: AMS forthcoming, 2012. P. 1-9.
Goldsmith B. and Gong K. On some generalizations of Hopfian and co-Hopfian Abelian groups // Acta Math. Hung. 2013. V. 139. No. 4. P. 393-398.
Dikranjan D., Goldsmith B., Salce L. and Zanardo Р. Algebraic entropy for Abelian groups // Trans. Amer. Math. Soc. 2009. V. 361. No. 7. P. 3401-3434.
Beaumont R.A. Groups with isomorphic proper subgroups // Bull. Amer. Math. Soc. 1945. V. 51. P. 381-387.
Beaumont R.A. and Pierce R.S. Partly transitive modules and modules with proper isomorphic submodules // Trans. Amer. Math. Soc. 1959. V. 91. P. 209-219.
Beaumont R.A. and Pierce R.S. Isomorphic direct summands of Abelian groups // Math. Annal. 1964. V. 153. P. 21-37.
Гриншпон С.Я., Никольская (Савинкова) М.М. /F-группы // Вестник Томского государственного университета. Математика и механика. 2010. № 1(9). С. 5-14.
Гриншпон С.Я., Никольская (Савинкова) М.М. Примарные /F-группы // Вестник Томского государственного университета. Математика и механика. 2011. № 3(15). С. 25-31.
Гриншпон С.Я., Никольская (Савинкова) М.М. Собственные вполне характеристические подгруппы групп без кручения, изоморфные самой группе // Вестник Томского государственного университета. Математика и механика. 2012. № 1(17). С. 25-30.
Гриншпон С.Я., Никольская (Савинкова) М.М. Периодические /F-группы // Фундамент. и прикл. матем. 2012. Т. 17. № 8. С. 47-58.
Кайгородов Е.В. Хопфовы абелевы группы // Вестник Томского государственного университета. Математика и механика. 2012. № 2(18). C. 5-12.
Кайгородов Е.В. О двух классах хопфовых абелевых групп // Вестник Томского государственного университета. Математика и механика. 2013. № 2(22). С. 22-33.
Кайгородов Е.В. Хопфовы вполне разложимые группы без кручения // Вестник Томского государственного университета. Математика и механика. 2013. № 4(24). С. 24-28.
Кайгородов Е. В. Хопфовы алгебраически компактные абелевы группы // Алгебра и логика. 2013. Т. 52. № 6. С. 667-675.
Crawley P. An infinite primary Abelian group without proper isomorphic subgroups // Bull. Amer. Math. Soc. 1962. V. 68. P. 463-467.
Hill P. and Megibben Ch. On primary groups with countable basic subgroups // Trans. Amer. Math. Soc. 1966. V. 124. No. 1. P. 49-59.
Monk G. S. Abelian p -groups without proper isomorphic pure dense subgroups // 1ll. J. Math. 1970. V. 14. No. 1. P. 164-177.
Goldsmith B., Ohogain S. and Wallutis S. Quasi-minimal groups // Proc. Amer. Math. Soc. 2004. V. 132. No. 8. P. 2185-2195.
Chekhlov A. R. and Danchev P. V. On Abelian Groups having all proper fully invariant subgroups isomorphic // Comm. Algebra. 2015.
Курош А.Г. Теория групп. М.: Наука, 1967. 648 с.
Гретцер Г. Общая теория решеток: пер. с англ. / под ред. Д.М. Смирнова. М.: Мир, 1981. 456 с.
Крылов П.А., Михалев А.В., Туганбаев А.А. Абелевы группы и их кольца эндоморфизмов. М.: Факториал Пресс, 2006. 512 с. (Advanced Studies in Mathematics and Mechanics; Вып. 2).
Фукс Л. Бесконечные абелевы группы: в 2 т. М.: Мир, 1974. Т. 1. 336 с.
 Co-Hopfian abelian groups | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2015. № 4(36).

Co-Hopfian abelian groups | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2015. № 4(36).

Download full-text version
Counter downloads: 913