Contact metric structures on 3-dimentional non-unimodular Lie groups | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2015. № 5(37).

Contact metric structures on 3-dimentional non-unimodular Lie groups

Definition 1. A differentiable (2n+1)-dimensional manifold М of the class С is called a contact manifold if there exists a differential 1-form n on M + , such that (nAdn) ф 0. The form n is called a contact form. Definition 2. If M + is a contact manifold with a contact form n, then a contact metric structure is the quadruple (n,^,9,g), where Z is a Reeb's field, g is a Riemannian metric, and ф is an affinor on M + , for which the following properties are valid: 1) ф =-I +n®Z, 2) dn(X,Y)=g(XwY), 3) g^^Y) = g(X,Y) - n(X)n(Y). We consider a non-unimodular Lie group G; its Lie algebra has a basis е ье 23 such that к.,] = a*^ [^3] = У^ . 3 = nx = (; P) + 8 = 2. The left invariant 1-form n = а 16 + а 20 + а 30 defines a contact structure on the group G if (8 - a)a 2a 3 - Pa 3 + Ya 2 * 0 f0 -1 As a contact form, we choose the simplest one, n = Q ,ф 0 , and consider other 1 0 0 0 0 0 metrics that also define a contact metric form. We obtain that a contact metric structure on a non-unimodular Lie group can be set by the quadruple (n,Z^,g), where 0 П = б , = ез, ф 1 + 2р cos а 1 - р' 1 - 0 0

Download file
Counter downloads: 285

Keywords

contact metric structure, Lie group, contact form, контактная форма, контактная метрическая структура, группа Ли

Authors

NameOrganizationE-mail
Sedykh Anna GennadyevnaKemerovo Institute of Plekhanov Russian University of EconomicsSedykh-anna@mail.ru
Всего: 1

References

Смоленцев Н.К. Ассоциированные почти комплексные структуры и (псевдо) римановы метрики на группах GL(2,R) и SL(2,R)xR // Вестник Кемеровского государственного университета. № 4(24). С. 155-162.
Смоленцев Н.К. Простпанства римановых метрик // Современная математика и ее приложения. 2003. Т. 31. С. 69-126.
Седых А.Г. Контактные структуры на трехмерных группах Ли. LAP LAMBERT Academic Publishing, 2013.
Milnor J. Curvatures of left invariant metrics on Lie groups // Advances in Math. 1976. V. 21. P. 293-329.
Кобаяси Ш, Номидзу К. Основы дифференциальной геометрии: в 2 т. М.: Наука, 1981.
Дубровин Б.А., Новиков С.П., Фоменко А.Т. Современная геометрия. Методы и приложения: в 2 т. М.: Эдиториал УРСС, 1998.
Blair D.E. Contact manifold in Riemannian geometry. Lecture Notes in Mathematics. Berlin Heidelberg - New York, Springer Verlag, 1976.
 Contact metric structures on 3-dimentional non-unimodular Lie groups | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2015. № 5(37).

Contact metric structures on 3-dimentional non-unimodular Lie groups | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2015. № 5(37).

Download full-text version
Counter downloads: 1023