Solving axisymmetric potential problems using the indirect boundary element method | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2015. № 5(37).

Solving axisymmetric potential problems using the indirect boundary element method

The paper contains all necessary relations to implement the indirect boundary element method in order to solve axisymmetric potential problems. It includes fundamental solutions of Laplace's equation for the potential and flux in the axisymmetric case. These solutions contain complete elliptic integrals of the first and second kinds. Based on this, boundary integral equations were written corresponding to the boundary value problem. The equations were quantized by means of constant elements. The approximate formula for the integral of the fundamental solution for the potential along the element with singularity was obtained using truncated Taylor series and complete elliptic integral of the first kind approximation by a polynomial. In a similar case for the flux, a value of 0.5 was used according to the theorem about the discontinuity in the derivative of the simple layer potential. Approximate convergence of the method was explored based on three test examples. Attained results demonstrate a good convergence of the method, except for the flux computation in a close proximity to the axis of symmetry and corner points, which have nonremovable singularities. It was also shown that using the Gauss quadrature formula with four points is sufficient to estimate the nonsingular integral along the elements with a sufficient level of accuracy.

Download file
Counter downloads: 336

Keywords

теория потенциала, уравнение Лапласа, осесимметрич-ные задачи, непрямой метод граничных элементов, сингулярные интегралы, potential theory, Laplace's equation, axisymmetric problems, indirect boundary element method, singular integrals

Authors

NameOrganizationE-mail
Ponomareva Maria AndreevnaTomsk State Universitypma@ftf.tsu.ru
Sobko Evgeniy AlekseevichTomsk State Universitysobkozheka@gmail.com
Yakutenok Vladimir AlbertovichTomsk State Universityyva@ftf.tsu.ru
Всего: 3

References

Бенерджи П., Баттерфилд Р. Методы граничных элементов в прикладных науках: пер. с англ. М.: Мир, 1984.
Бреббия К., Теллес Ж., Вроубел Л. Методы граничных элементов: пер. с англ. М.: Мир, 1987.
Rui Z., Jin H., Tao L. Mechanical quadrature methods and their splitting extrapolations for solving boundary integral equations of axisymmetric Laplace mixed boundary value problems // Engineering Analysis with Boundary Elements. 2006. No. 30. P. 391-398.
Singh J., Gliere A., Achard J. A multipole expantion-based boundary element method for axisymmetric potential problem // Engineering Analysis with Boundary Elements. 2009. No. 33. P. 654-660.
Smyrilis Y.-S., Karageorghis A. A matrix decomposition MFS algorithm for axisymmetric potential problems // Engineering Analysis with Boundary Elements. 2004. No. 28. P. 463-474.
Reutskiy S. The method of approximate fundamental solutions for axisymmetric problems with Laplace operator // Engineering Analysis with Boundary Elements. 2007. No. 31. P. 410-415.
Абрамовиц М., Стиган И. Справочник по специальным функциям с формулами, графиками и математическими таблицами: пер. с англ. М.: Наука, 1979.
Тихонов А.Н., Самарский А.А. Уравнения математической физики. М.: Наука, 1977.
 Solving axisymmetric potential problems using the indirect boundary element method | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2015. № 5(37).

Solving axisymmetric potential problems using the indirect boundary element method | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2015. № 5(37).

Download full-text version
Counter downloads: 1023