Left-invariant measures on topological n-ary subsemigroup of binary groups | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2015. № 6(38).

Left-invariant measures on topological n-ary subsemigroup of binary groups

Convolutions of measures and functions, as well as the Fourier transform of measures on locally compact Abelian n-ary groups were introduced in [1]. Development of harmonic analysis on n-ary algebraic objects endowed with a topology is closely related to the existence of a non-zero invariant measure on such objects. Invariant measures on topological n-ary semigroups were considered in [2] and [3]. In Theorem 2 of this paper, we establish necessary and sufficient conditions for the existence of a left-invariant measure on topological n-ary subsemigroups of binary groups. It can be treated as an extension of the results of [4] to the case of n-ary topological semigroups. The result established in Theorem 1 establishes is interesting for topological algebra.

Download file
Counter downloads: 262

Keywords

левоинвариантная мера, топологическая n-арная полугруппа, идеал n-арной полугруппы, left-invariant measure, topological n-ary semigroup, ideal of an n-ary semigroup

Authors

NameOrganizationE-mail
Sergeeva Dina VladimirovnaVologda Institute of Law and Economicsdina_sergeeva@mail.ru
Всего: 1

References

Мухин В.В., Сергеева Д.В. Теорема двойственности для локально компактных абелевых и-групп // Сибирский математический журнал. 2008. № 6. С. 1361-1368.
Мухин В.В. Инвариантные меры на топологических и-полугруппах // Весщ НАН Беларуси. Сер. фiз. мат. навук. 2000. № 4. С. 16-21.
Сергеева Д.В. О существовании инвариантных мер на топологических абелевых и-арных полугруппах с сокращениями // Вестник ИжГТУ. Математика. 2013. № 2. С. 140-141.
Mukhin V.V. Invauiant measurcs on topologicals semigroups which have on ideal with open translation mappings // Semigroup Forum. 2001. V. 62. P. 159-172.
Русаков С.А. Алгебраические и-арные системы: Силовская теория и-арных групп. Мн.: Навука i тэхшка, 1992. 264 с.
Мухин В.В., Филипова Е.Е. О продолжении топологии с системы образующих группы до топологии на группе // Известия вузов. Математика. 2009. № 6. С. 37-41.
 Left-invariant measures on topological n-ary subsemigroup of binary groups | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2015. № 6(38).

Left-invariant measures on topological n-ary subsemigroup of binary groups | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2015. № 6(38).

Download full-text version
Counter downloads: 750