Non-Newtonian fluid flow in a liddriven cavity at low Reynolds numbers | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2015. № 6(38).

Non-Newtonian fluid flow in a liddriven cavity at low Reynolds numbers

In this paper, the question about the distribution of kinematic and dynamic properties of a non-Newtonian fluid flow in a lid-driven square cavity is considered. The power-law model is used as the rheological model. The numerical solution is received using the indirect boundary element method in the creeping flow approximation. The study is performed in the range of the power-law index from 0.2 to 1.2. The velocity component profiles at the mid-span of the cavity are obtained. For the case of the Newtonian fluid, a comparison with known results showed a good agreement. It is shown that the position of the main vortex shifts towards the upper moving lid as the power-law index decreases. The fields of effective viscosity and deformation rate intensity inside the flow domain are presented.

Download file
Counter downloads: 266

Keywords

неньютоновская жидкость, течение в каверне, непрямой метод граничных элементов, non-Newtonian fluid, flow in lid-driven cavity, Indirect Boundary Element Method

Authors

NameOrganizationE-mail
Ponomareva Maria AndreevnaTomsk State Universitypma@ftf.tsu.ru
Filina Maria PetrovnaTomsk State Universityfilina.mari@mail.ru
Yakutenok Vladimir AlbertovichTomsk State Universityyva@ftf.tsu.ru
Всего: 3

References

Елизарова Т.Г., Милюкова О.М. Численное моделирование течения вязкой несжимаемой жидкости в кубической каверне // Журнал вычислительной математики и математической физики. 2003. Т. 43. № 3. С. 453-466.
Haque S., Lashgari I., Giannetti F. Stability of fluids with shear-dependent viscosity in the lid-driven cavity // J. Non-Newtonian Fluid Mechanics. 2012. No. 173. P. 49-61.
Anderson P.D., Galaktinov O.S., Peters G.W. Mixing of non-Newtonian fluids in time-periodic cavity flows // J. Non-Newtonian Fluid Mechanics. 2000. No. 93. P. 265-286.
Lashckarbolok M., Jabbari E. Collocated Discrete Least Squares (CDLS) meshless method for the simulation of power-law fluid flows // Scientia Iranica. 2013. No. 20(2). P. 322-328.
Nejat A., Sharbatdar M., Jalali A. A Newton-Krylov finite volume algorithm for power-law non-Newtonian fluid flows using pseudo-compressibility method // 20th AIAA Computational Fluid Dynamics Conference AiAA. 2011. С. 1-19.
Li Q., Hong N., Shi B. Simulation of power-law fluid flows in two-dimensional square cavity using multi-relaxation-time lattice boltzmann method // Commun. Comput. Phys. 2014. V. 15. No. 1. P. 256-284.
Liu M.B., Xie W.P., Liu G.R. Modeling incompressible flows using a finite particle method // Applied Mathematical Modeling. 2005. V. 29. P. 1252-1270.
Shamekhi A., Aliabadi A. Non-Newtonian lid-driven cavity flow simulation by mesh free method // ICCES. 2009. V. 11. No. 3. С. 67-72.
Бреббия К., Теллес Ж., Вроубел Л. Методы граничных элементов. М.: Мир, 1987.
Ладыженская О.А. Математические вопросы динамики вязкой несжимаемой жидкости. М.: Наука, 1970.
Ponomareva M.A., Filina M.P., Yakutenok V.A. The indirect boundary element method for the two-dimensional pressure- and gravity-driven free surface Stokes flow // WIT Transactions on Modelling and Simulation. 2014. V. 57. P. 289-304. DOI: 10.2495/BE370241.
 Non-Newtonian fluid flow in a liddriven cavity at low Reynolds numbers | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2015. № 6(38).

Non-Newtonian fluid flow in a liddriven cavity at low Reynolds numbers | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2015. № 6(38).

Download full-text version
Counter downloads: 750