Non-Newtonian fluid flow in a liddriven cavity at low Reynolds numbers
In this paper, the question about the distribution of kinematic and dynamic properties of a non-Newtonian fluid flow in a lid-driven square cavity is considered. The power-law model is used as the rheological model. The numerical solution is received using the indirect boundary element method in the creeping flow approximation. The study is performed in the range of the power-law index from 0.2 to 1.2. The velocity component profiles at the mid-span of the cavity are obtained. For the case of the Newtonian fluid, a comparison with known results showed a good agreement. It is shown that the position of the main vortex shifts towards the upper moving lid as the power-law index decreases. The fields of effective viscosity and deformation rate intensity inside the flow domain are presented.
Keywords
неньютоновская жидкость,
течение в каверне,
непрямой метод граничных элементов,
non-Newtonian fluid,
flow in lid-driven cavity,
Indirect Boundary Element MethodAuthors
Ponomareva Maria Andreevna | Tomsk State University | pma@ftf.tsu.ru |
Filina Maria Petrovna | Tomsk State University | filina.mari@mail.ru |
Yakutenok Vladimir Albertovich | Tomsk State University | yva@ftf.tsu.ru |
Всего: 3
References
Елизарова Т.Г., Милюкова О.М. Численное моделирование течения вязкой несжимаемой жидкости в кубической каверне // Журнал вычислительной математики и математической физики. 2003. Т. 43. № 3. С. 453-466.
Haque S., Lashgari I., Giannetti F. Stability of fluids with shear-dependent viscosity in the lid-driven cavity // J. Non-Newtonian Fluid Mechanics. 2012. No. 173. P. 49-61.
Anderson P.D., Galaktinov O.S., Peters G.W. Mixing of non-Newtonian fluids in time-periodic cavity flows // J. Non-Newtonian Fluid Mechanics. 2000. No. 93. P. 265-286.
Lashckarbolok M., Jabbari E. Collocated Discrete Least Squares (CDLS) meshless method for the simulation of power-law fluid flows // Scientia Iranica. 2013. No. 20(2). P. 322-328.
Nejat A., Sharbatdar M., Jalali A. A Newton-Krylov finite volume algorithm for power-law non-Newtonian fluid flows using pseudo-compressibility method // 20th AIAA Computational Fluid Dynamics Conference AiAA. 2011. С. 1-19.
Li Q., Hong N., Shi B. Simulation of power-law fluid flows in two-dimensional square cavity using multi-relaxation-time lattice boltzmann method // Commun. Comput. Phys. 2014. V. 15. No. 1. P. 256-284.
Liu M.B., Xie W.P., Liu G.R. Modeling incompressible flows using a finite particle method // Applied Mathematical Modeling. 2005. V. 29. P. 1252-1270.
Shamekhi A., Aliabadi A. Non-Newtonian lid-driven cavity flow simulation by mesh free method // ICCES. 2009. V. 11. No. 3. С. 67-72.
Бреббия К., Теллес Ж., Вроубел Л. Методы граничных элементов. М.: Мир, 1987.
Ладыженская О.А. Математические вопросы динамики вязкой несжимаемой жидкости. М.: Наука, 1970.
Ponomareva M.A., Filina M.P., Yakutenok V.A. The indirect boundary element method for the two-dimensional pressure- and gravity-driven free surface Stokes flow // WIT Transactions on Modelling and Simulation. 2014. V. 57. P. 289-304. DOI: 10.2495/BE370241.