Asymptotic expansion of the solution of the Dirichlet problem for a ring with a singularity on the boundary | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2016. № 1(39).

Asymptotic expansion of the solution of the Dirichlet problem for a ring with a singularity on the boundary

Owing to the large number and variety of applications, the Dirichlet problem for elliptic equations with a small parameter at highest derivatives occupies a unique place in mathematics. The main problem of flow around in hydrodynamics, the problem of torsion and bending in the elasticity theory, determination of temperature inside a plate according to its known values on the contour in physics, the potential of the steady flow of an incompressible fluid, electromagnetic and magnetic potentials, and the determination of the temperature of the thermal field or electrostatic field potential in a certain region at a given temperature or potential on the boundary can be reduced to this problem. It is also closely related to main problems of statistical theory of elasticity and others. The explicit solution of these problems can be constructed in the general case only using different asymptotic and numerical methods. When the corresponding unperturbed equation has a smooth solution, these problems are called bisingular in A.M. Il'in's terminology. The method of matching was applied before to construct the asymptotic of bisingularly perturbed problems but the method of boundary functions was not used directly. The authors propose to modify the method of boundary functions by use of which it is possible to construct asymptotic solutions of the Dirichlet problem for a bisingularly perturbed second order elliptic equation with two independent variables in a ring domain. The aim of the study is to develop the asymptotic method of boundary functions for bisingularly perturbed problems. The constructed asymptotic series is a series of Puiseux. The principal term of the asymptotic expansion of the solution has a negative fractional power in the small parameter, which is inherent to bisingular perturbed equations or equations with turning points.

Download file
Counter downloads: 421

Keywords

modification Bessel functions, boundary functions, generalized method of boundary functions, small parameter, Dirichlet problem, elliptic type equation, bisingular perturbation, Asymptotic expansion of a solution, модифицированные функции Бесселя, пограничные функции, обобщенный метод пограничных функций, малый параметр, задача Дирихле, уравнение эллиптического типа, бисингулярное возмущение, асимптотическое разложение решения

Authors

NameOrganizationE-mail
Tursunov Dilmumt A.Ural State Pedagogical University (Yekaterinburg)d_osh@rambler.ru
Erkebaev Ulukbek Z.Osh State Universityuluk3188@mail.ru
Всего: 2

References

Tursunov D.A., Belekov K.J. Asymptotic expansion of the solution of the Dirichlet problem for bisingular perturbed elliptic equations in domains with smooth boundaries // Proc. of V Congress of the Turkic World Mathematicians (Kyrgyzstan, Bulan-Sogottu, 5-7 June, 2014) / Edited by Academician Altay Borubaev. Bishkek: Kyrgyz Mathematical Society, 2014. P. 143-147.
Турсунов Д.А. Асимптотика решения бисингулярно возмущенного эллиптического уравнения. Случай особой точки на границе // Известия Томского политехнического университета. 2014. Т. 324. № 2. С. 31-35.
Турсунов Д.А. Асимптотическое разложение решения бисингулярно возмущенного эллиптического уравнения // Вестник Томского государственного университета. Математика и механика. 2013. № 6(26). С. 37-44.
Алымкулов К., Асылбеков Т.Д., Долбеева С.Ф. Обобщение метода погранфункций для решения краевой задачи для бисингулярно возмущенного дифференциального уравнения второго порядка // Математические заметки. 2013. Т. 94. Вып. 3. С. 483-487.
Alymkulov K. Method of boundary layer function to solve the boundary value problem for a singularly perturbed differential equation of the order two with a turning point // Universal J. Appl. Math. 2014. V. 2. No. 3. P. 119-124.
Леликова Е.Ф. Об асимптотике решения одного уравнения с малым параметром при части старших производных // Тр. ИММ УрО РАН. 2012. Т. 18. № 2. С. 170-178.
Ильин А.М. Согласование асимптотических разложений краевых задач. М.: Наука, 1989. 334 с.
Белошапко В.А., Бутузов В. Ф. Сингулярно возмущенная эллиптическая задача в случае кратного корня вырожденного уравнения // ЖВМ и МФ. 2013. Т. 53. № 8. С. 1291-1301.
Бутузов В. Ф., Левашова Н.Т., Мельникова А.А. Контрастная структура типа ступеньки в сингулярно возмущенной системе эллиптических уравнений // ЖВМ и МФ. 2013. Т. 53. № 9. С. 1427-1447.
Shagi-di Shih, КlloggR.B. Asymptotic analysis of a singular perturbation problem // SIAM J. Math. Anal. 1987. V. 18. No. 5. P. 1467-1511.
Бутузов В.Ф., Денисов И. В. Угловой пограничный слой в нелинейных эллиптических задачах, содержащих производные первого порядка // Модел. и анализ информационных систем. 2014. Т. 21. № 1. С. 7-31.
Levinson N. The first boundary value problem for gДu+Aux+Buy+Cu=D for small е // Ann. of Math. 1950. V. 51. P. 428-445.
Eckhaus W. Boundary layers in linear elliptic singular perturbation problems // SIAM Review. 1972. V. 14. No. 2. P. 225-270.
Гилбарг Д., Трудингер Н. Эллиптические дифференциальные уравнения с частными производными второго порядка. М.: Наука, 1989. 464 с.
 Asymptotic expansion of the solution of the Dirichlet problem for a ring with a singularity on the boundary | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2016. № 1(39).

Asymptotic expansion of the solution of the Dirichlet problem for a ring with a singularity on the boundary | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2016. № 1(39).

Download full-text version
Counter downloads: 1168