Defect of mapping for deformed segment of metallic mesh | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2016. № 2(40).

Defect of mapping for deformed segment of metallic mesh

Metallic mesh tailoring aimed to form a parabolic reflector is identified with biunique reflection of plain's part on a part of a paraboloid of revolution. In previous publications the authors have developed an analytical tool to assess the quality of metallic mesh tailoring for reflector antennas of any design. Its basis is a function (called the main function) the value of which depends on the ratio of first quadratic forms defining a local quadratic metric of a piece of plane and that for the corresponding segment of the metallic mesh. The integral mean of this function is called the display defect. The examples of display effect to assess the quality of metallic mesh tailoring for axisymmetric reflector are provided in previous publications. They, however, do not take into account the effect of reverse deflection of the metallic mesh between adjacent ribs of the bearing structure - the so-called mattress effect. This article fills this gap. A vector function has been built for the metallic mesh exposed to mattress effect. The functions by which the problem of display defect is solved are very complex. Polynomial approximations are constructed for them with estimated accuracy of approximation. The algorithm has been developed to calculate the display defect for practically important values for technological parameters of the axisymmetric reflector. Among these parameters are the focal parameter of the parent paraboloid, radius of the cutting out cylinder, and number of sectors.

Download file
Counter downloads: 267

Keywords

параболический рефлектор, сетеполотно, отображение поверхностей, дефект отображения поверхности на поверхность, деформация сетеполотна, parabolic reflector, metallic mesh, mapping of surfaces, defect of surface-to surface mapping, deformation of metallic mesh

Authors

NameOrganizationE-mail
Bukhtyak Mikhail StepanovychTomsk State Universitybukhtyakm@mail.ru
Всего: 1

References

Бухтяк М.С., Соломина А.В. Геометрическое моделирование раскроя сетеполотна для осесимметричного рефлектора. Часть 1 // Вестник Томского государственного университета. Математика и механика. 2015. № 2(34). С. 5-17.
Бухтяк М.С., Соломина А.В. Геометрическое моделирование раскроя сетеполотна для осесимметричного рефлектора. Часть 2 // Вестник Томского государственного университета. Математика и механика. 2015. № 4(36). С. 5-14.
Бухтяк М.С., Соломина А.В. Об одном инварианте отображения поверхностей применительно к раскрою сетеполотна // Вестник Томского государственного университета. Математика и механика. 2016. № 1(39). С. 13-24.
БухтякМ.С. Геометрическое моделирование деформации сетеполотна параболического рефлектора // Математическое моделирование. 2016. Т. 28. № 1. С. 97-106.
Гряник М.В., Ломан В.И. Развертываемые зеркальные антенны зонтичного типа. М.: Радио и связь, 1987. 72 с.
Фиников С.П. Теория конгруэнций. М.-Л.: ГИТТЛ, 1950. 528 с.
 Defect of mapping for deformed segment of metallic mesh | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2016. № 2(40).

Defect of mapping for deformed segment of metallic mesh | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2016. № 2(40).

Download full-text version
Counter downloads: 1438