Fully inert subgroups of completely decomposable finite rank groups and their commensurability | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2016. № 3(41).

Fully inert subgroups of completely decomposable finite rank groups and their commensurability

A subgroup H of an Abelian group G is said to be fully inert in G if the subgroup HfфH has a finite index in фH for any endomorphism ф of the group G. Subgroups H and K of the group G are said to be commensurable if the subgroup KfH has a finite index in H and in K. Some properties of fully inert and commensurable groups in the context of direct decompositions of the group and operations on subgroups are proved. For example, if a subgroup H is commensurable with a subgroup K, then H is commensurable with HfK and with H + K; if a subgroup H is commensurable with a subgroup K, then the subgroup fH is commensurable with fK for any homomorphism f. The main result of the paper is that every fully inert subgroup of a completely decomposable finite rank torsion-free group G is commensurable with a fully invariant subgroup if and only if types of rank 1 direct summands of the group G are either equal or incomparable, and all rank 1 direct summands of the group G are not divisible by any prime number p.

Download file
Counter downloads: 305

Keywords

фактор-группа, вполне инвариантная подгруппа, соизмеримые подгруппы, делимая оболочка, ранг группы, factor group, fully invariant subgroup, commensurable subgroups, divisible hull, rank of the group

Authors

NameOrganizationE-mail
Chekhlov Andrey RostislavovichTomsk State Universitycheklov@math.tsu.ru
Всего: 1

References

Dikranjan D., Giordano Bruno A., Salce L., Virili S. Fully inert subgroups of divisible Abe-lian groups // J. Group Theory. 2013. V. 16. No 6. P. 915-939.
Dikranjan D., Salce L., Zanardo P. Fully inert subgroups of free Abelian groups // Period. Math. Hungar. 2014. V. 69. No 1. P. 69-78. DOI 10.1007/s10998-014-0041-4.
Goldsmith B., Salce L., Zanardo P. Fully inert subgroups of Abelian p-groups // J. of Algebra. 2014. V. 419. P. 332-349.
Беляев В.В. Инертные подгруппы в бесконечных простых группах // Сиб. матем. журн. 1993. Т. 34. № 4. С. 17-23.
Беляев В.В. Локально конечные группы с конечной неотделимой подгруппой // Сиб. матем. журн. 1993. Т. 34. № 2. С. 23-41.
Belyaev V.V., Kuzucuoglu M., Seqkin E. Totally inert groups // Rend. Sem. Mat. Univ. Pa-dova. 1999. V. 102. P. 151-156.
Dixon M.R, EvansM.J., Tortora A. On totally inert simple groups // Cent. Eur. J. Math. 2010. V. 8. No 1. P. 22-25. DOI 10.2478/s11533-009-0067-7.
Dardano U., Rinauro S. Inertial automorphisms of an abelian group // Rend. Sem. Mat. Univ. Padova. 2012. V. 127. P. 213-233. DOI 10.4171/RSMUP/127-11.
Фукс Л. Бесконечные абелевы группы. М.: Мир, 1977. Т. 2. 417 с.
Чехлов А.Р. Об одном классе эндотранзитивных групп // Матем. заметки. 2001. Т. 69. № 6. С. 944-949.
Чехлов А.Р. О проективном коммутанте абелевых групп // Сиб. матем. журн. 2012. Т. 53. № 2. С. 451-464.
Чехлов А.Р. Об абелевых группах с нильпотентными коммутаторами эндоморфизмов // Изв. вузов. Математика. 2012. № 10. С. 60-73.
Чехлов А.Р. О проективно разрешимых абелевых группах // Сиб. матем. журн. 2012. Т. 53. № 5. С. 1157-1165.
Чехлов А.Р. Об абелевых группах, близких к E-разрешимым // Фундамент. и прикл. матем. 2011/2012. Т. 17. № 8. С. 183-219.
Chekhlov A.R., Danchev P.V. On Abelian groups having all proper fully invariant subgroups isomorphic // Comm. Algebra. 2015. V. 43. No. 12. P. 5059-5073. DOI 10.1080/00927872. 2015.1008011.
Calugareanu G. Strongly invariant subgroups // Glasg. Math. J. 2015. V. 57. No. 2. P. 431443.
 Fully inert subgroups of completely decomposable finite rank groups and their commensurability | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2016. № 3(41).

Fully inert subgroups of completely decomposable finite rank groups and their commensurability | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2016. № 3(41).

Download full-text version
Counter downloads: 671