The wave permeability of a compacted nanoparticle layer | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2016. № 3(41).

The wave permeability of a compacted nanoparticle layer

The simplest example of the porous filtering system is a compacted material obtained by pressing spherical nanoparticles. Filtration characteristics of this material depend on mobility of molecules in the field of van der Waals forces. А one-dimensional wave dynamic problem of the helium molecules motion through the ultrathin porous layer of compacted diamond nanoparticles is considered. These layers of matter make a potential barrier obstructing the passage of molecules. The permeability of the layer is derived by solving the Schrodinger equation. The calculation technology for integration of the Schrodinger equation is suggested. It is based on two fundamental numerical solutions of the problem of waves passing through the barrier of potential forces. A linear combination of these solutions determinates the wave function. The square of this function is a probability of detecting molecules in a particular place. Linking this representation of wave function with asymptotic boundary conditions makes it possible to determine the coefficients of passing and reflecting of molecules from the barrier. The barrier is the energy of compacted nanoparticles. This technology provides with results close to the analytical solution in particular cases. This fact allows to generalize the method to the case of molecular movement through the layer of nanoparticles and to determine the dependence between permeability and porosity of the layer.

Download file
Counter downloads: 255

Keywords

поле потенциальных сил, наночастицы, движение молекул, численные методы, проницаемость, уравнение Шредингера, potential force field, nanoparticles, molecular motion, numerical method, permeability, Schrodinger equation

Authors

NameOrganizationE-mail
Bubenchikov Aleksey MiMiaylovichTomsk State Universityalexyl21@mail.ru
Bubenchikov Mihail AlekseevichGazpromTransgaz Tomskmichaell2l@mail.ru
Poteryaeva Valentina AleksandrovnaTomsk State Universityvalentina.poteryaeva@gmail.com
Libin Eduard EphimovichTomsk State University
Всего: 4

References

Глазер В. Основы электронной оптики: пер. с нем. М.: Гостехиздат, 1957. 764 с.
Мотт Н., Снеддон И. Волновая механика и её применения. М.: Наука, 1966. 428 с.
Мартинсон Л.К., Смирнов Е.В. Квантовая физика: учеб. пособие. М.: Изд-во МГТУ имени Н.Э. Баумана, 2004. 496 с.
Морс Ф.М., Фешбах Г. Методы теоретической физики: в двух томах. Т. 2. М.: Книга по Требованию, 2012. 942 с.
Ландау Л.Д, Лифшиц Е.М. Квантовая механика. Нерелятивистская теория. Теоретическая физика. Т. 3. 4-е изд. М.: Наука, 1989. 766 с. 0.8 0.6 0.4 0.2 Рис. 5. Зависимость проницаемости слоя от пористости Fig. 5. Layer permeability as a function of porosity
Бубенчиков А.М., Бубенчиков М.А., Потекаев А.И., Либин Э.Е., Худобина Ю.П. Потенциальное поле углеродных тел как основа сорбционных свойств барьерных газовых систем // Изв. вузов. Физика. 2015. T. 58. № 7. C. 10-15.
 The wave permeability of a compacted nanoparticle layer | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2016. № 3(41).

The wave permeability of a compacted nanoparticle layer | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2016. № 3(41).

Download full-text version
Counter downloads: 671