Associated contact metric structures on the 7-dimensional unit sphere S | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2016. № 4(42).

Associated contact metric structures on the 7-dimensional unit sphere S

In this paper, we construct new examples of associated contact metric structures (n, Ф, g) on the 7-dimensional unit sphere S, other than standard. The construction involved a Hopf bundle n: S^CP. This projection maps affinor ф into an almost complex structure J. Therefore, it became necessary to build new examples of associated almost complex structures J in the 3-dimensional complex projective space CP. Let Ф be a nondegenerate 2-form (a Fubini-Study form). An almost complex structure J is called positively associated with the form Ф if the following conditions are satisfied for any vector fields X, Y: Ф(JX, JY) = Ф^,Y) and Ф^, JX) > 0 , if X * 0 . Each positively associated almost complex structure J defines a Riemannian metric g by the equality g(X,Y) = Ф^, JY); the metric is also called associated. The associated metric has the following properties: g(JX, JY) = g(X, JY), g(JX,Y) = Ф(X,Y) . The positively associated almost complex structure can be obtained as follows: J = J 0(1 + R)(1 - R) -, where R is a symmetric endomorphism R: TCP ^ TCP anticommuting with the standard structure J0, J ~{° 4 0 -iI In this paper, we have found a series of matrices R satisfying these conditions. Each matrix of this kind defines an associated almost complex structure in the space CP. One of these matrices, ' 0 н! 1 R R 0 (1+1 w |) f-1 2 3 n n Л www 0 0 r\ 1-2 3 n 0 www 0 0 0 www where the block Ra = , has been considered in more detail. For this endomorphism, the relevant almost complex structure J and a Hermite metric g have been found in the space CP. It has been verified that the constructed structure J is not integrable.

Download file
Counter downloads: 244

Keywords

контактные структуры, ассоциированные контактные метрические структуры, 7-мерная сфера, contact structures, associated contact metric structures, 7-dimensional sphere

Authors

NameOrganizationE-mail
Slavolyubova Yaroslavna ViktorovnaKemerovo Institute of Plekhanov Russian University of Economicsjar1984@mail.ru
Всего: 1

References

Blair D.E. Riemannian Geometry of Contact and Symplectic Manifolds // Progress in Mathematics. V. 203. Birkhauser Boston, 2002. 304 p.
Славолюбова Я.В. Контактные метрические структуры на нечетномерных единичных сферах // Вестник Томского государственного университета. Математика и механика. 2014. № 6(32). C. 46-54.
Кобаяси Ш., Номидзу К. Основы дифференциальной геометрии. Т.1 и Т.2. М.: Наука, 1981. 344 с.
 Associated contact metric structures on the 7-dimensional unit sphere S | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2016. № 4(42).

Associated contact metric structures on the 7-dimensional unit sphere S | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2016. № 4(42).

Download full-text version
Counter downloads: 850