Investigation of viscous fluid flow in T-shaped channel with no slip/slip boundary conditions on the solid wall | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2016. № 4(42).

Investigation of viscous fluid flow in T-shaped channel with no slip/slip boundary conditions on the solid wall

The planar flow of a Newtonian incompressible fluid in a T-shaped channel is investigated. Three models of fluid interaction with solid walls are considered: (a) Traditional no-slip boundary condition implying the vanishing velocity vector on the solid walls. (b) Navier slip boundary condition according to which the tangential velocity on the solid wall is linearly proportional to the shear stress and the normal velocity is equal to zero. (c) Slip boundary condition with ultimate shear stress supposes that the tangential velocity on the solid wall is equal to zero when the shear stress does not exceed a certain ultimate shear stress; if the shear stress is more than the ultimate shear stress, the behavior of the fluid is similar to the Navier model. The fluid flow is provided by uniform pressure profiles in boundary sections of the channel. The problem is numerically solved using the finite difference method based on the SIMPLE procedure. As a result, the characteristic flow regimes have been found for described models of fluid interaction with a solid wall. The effect of Reynolds number, pressure of boundary sections, and parameters of the models on the flow pattern was performed. The criterion dependences describing the main flow characteristics under mathematical conditions of the present work have been plotted.

Download file
Counter downloads: 255

Keywords

течение, вязкая жидкость, граничное условие, Т-образный канал, численное моделирование, flow, viscous fluid, boundary condition, T-shaped channel, numerical simulation

Authors

NameOrganizationE-mail
Borzenko Evgeniy IvanovichTomsk State Universityborzenko@ftf.tsu.ru
Diakova Olga AlekseevnaTomsk State Universityolga.dyakova.1992@mail.ru
Всего: 2

References

Neto C., Evans D., Bonaccurso E. Boundary slip in Newtonian liquids: a review of experimental studies // Reports on Progress in Physics. 2005. V. 39. P. 2859-2897.
Янков В.И. Переработка волокнообразующих полимеров. Основы реологии полимеров и течение полимеров в каналах. Москва; Ижевск: НИЦ «Регулярная и хаотическая динамика», Институт компьютерных исследований, 2008.
Bahrami M., Tamayol A., Taheri P. Slip-flow pressure drop in microchannels of general cross section // Journal of Fluids engineering. 2009. V. 131. P. 031201-1-031201-8.
Volker J. Slip with friction and penetration with resistance boundary conditions for the Navier-Stokes equation - numerical test s and aspects of the implementation // Journal of computational and applied mechanics. 2002. V. 147. P. 287-300.
Minakov A., Rudyak V., Dektereva A., Gavrilov A. Investigation of slip boundary conditions in the T-shaped microchannel // International Journal of Heat and Fluid Flow. 2013. V. 43. P. 161-169.
Борзенко Е.И., Дьякова О.А., Шрагер Г.Р. Исследование явления проскальзывания в случае течения вязкой жидкости в изогнутом канале // Вестник Томского государственного университета. Математика и механика. 2014. № 2(28). С. 35-44.
Патанкар С. Численные методы решения задач теплообмена и динамики жидкости. М.: Энергоатомиздат, 1984.
Khandelwal V. et al. Laminar flow of non-Newtonian shear-thinning fluids in a T-channel // Computers & Fluids. 2015. V. 108. P. 79-91.
 Investigation of viscous fluid flow in T-shaped channel with no slip/slip boundary conditions on the solid wall | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2016. № 4(42).

Investigation of viscous fluid flow in T-shaped channel with no slip/slip boundary conditions on the solid wall | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2016. № 4(42).

Download full-text version
Counter downloads: 850