Evaluation of the turbulence scale in a flame at the diffusion combustion of diesel fuel | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2016. № 4(42).

Evaluation of the turbulence scale in a flame at the diffusion combustion of diesel fuel

Diffusion combustion generated during combustion both in technological devices and in natural fires is usually implemented during the turbulent flow of combustion products in the flame. Nonstationarity of the process leads to the distortion of the flame shape, which provides surface area extension and combustion rate increase. Turbulence scale and the magnitude of pulsation of the parameters significantly affect the combustion mechanism in turbulent flows. It should be noted that in turbulent conditions the scale of turbulent pulsations and the mixing intensity significantly affect the flame shape, the combustion speed, the thermodynamic parameters of the process, the combustion completeness, and efficiency. The development of the thermography methods gives encouraging results for obtaining reliable temperatures of the flame. Thereby it is possible to visualize the temperature inhomogeneities. Based on the analysis of the flame radiation spectra with the application of high speed infrared cameras, it was found that the temperature in the flame changes repeatedly in time, and there are characteristic frequencies in the range of the temperature changes. These frequencies are caused by the movement of the flame temperature inhomogeneities associated with the structure of the flow. This paper presents results of mathematical modeling of the current in the flame generated during diesel fuel combustion, and experimental estimates of the scale of turbulent eddies in the flame. The results were obtained using the SIMPLEC algorithm and thermography methods. The paper includes the description of the experimental design and data processing. A detailed description of the system of equations used for the mathematical modeling is presented. Comparing the results of numerical simulation and experimental data shows a good correlation of the basic thermodynamic parameters of the flame and the scale of turbulent eddies in it.

Download file
Counter downloads: 296

Keywords

ИК-термография, пламя, горение, спектр, температура, турбулентность, математическое моделирование, IR thermography, flame, combustion, temperature, turbulence, mathematical modeling

Authors

NameOrganizationE-mail
Loboda Egor LeonidovichTomsk State Universityloboda@mail.tsu.ru
Matvienko Oleg VictorovichTomsk State Universitymatvolegv@mail.ru
Agafontsev Mikhail VladimirovichTomsk State Universitykim75mva@gmail.com
Reyno Vladimir VladimirovichInstitute of Atmospheric Optics, SB RASreyno@iao.ru
Всего: 4

References

Lewis B., Elbe G. Combustion, Flames and Explosions of Gases. 3 ed. New York: Academic Press, 1987.
Libby P., Williams F.A. Turbulent Reacting Flows. London: Academic Press Inc, 1994. P. 1-43.
Spalding D. B. Mixing and chemical reaction in steady confined turbulent flames // Thirteenth Symposium (International) on Combustion. 1971. P. 649-657.
Shestakov M.V. et al. PIV study of large-scale flow organisation in slot jets // International Journal of Heat and Fluid Flow. 2015. V. 51. P. 335-352.
Alekseenko S. V., Dulin V. M., Markovich D. M., Pervunin K. S. Experimental Investigation of Turbulence Modification in Bubbly Axisymmetric Jets // Journal of Engineering Thermophysics. 2015. V. 24. No. 2. P. 101-112.
Ануфриев И.С., Аникин Ю.А., Фильков А.И. и др. Исследование структуры закрученного потока в модели вихревой камеры сгорания методом лазерной доплеровской анемометрии // Письма в журнал технической физики. 2012. Т. 38. № 24. С. 39-45.
Li Z. S., Li B., Sun Z. W., Bai X. S., Alden M. Turbulence and combustion interaction: High resolution local flame front structure visualization using simultaneous single-short PLIF imaging of CH, OH, and CH2O in piloted premixed jet flame// Combust. Flame. 2010. V. 157. P. 1087-1096.
Kathryn N.G., Shen H., Randy A.P., Fuest F., Sutton J.A. A comparison of turbulent dimethyl ether and methane non-premixed flame structure // Proceedings of Combustion Institute. 2013. V. 34. P. 1447-1454.
Kazuhiro Y., Shinji I., Masahiro O. Local flame structure and turbulent burning velocity by joint PLIF imaging // Proceeding of the Combustion Institute. 2011. V. 33. P. 1285-1292.
Duwig C., Li B., Li Z.S., Alden M. High resolution imaging of flameless and distributed turbulent combustion // Combust. Flame. 2012. V. 159. P. 306-316.
Goh K.H.H., Geipel P., Lindstedt R.P. Turbulent transport in premixed flames approaching extinction // Proceedings of the Combustion Institute. 2015. V. 35. P. 1469-1476.
Damien P., Jorge A., Mouna E.H., Benedicte C. Analysis of the interaction between turbulent combustion and thermal radiation using unsteady coupled LES/DOM simulations // Combustion and Flame. 2012. V. 159. P. 1605-1618.
Vivien R.L., Paul G.A., Somesh P.R., et al. Direct numerical simulations of non-premixed ethylene-air flames: Local flame extinction criterion // Combust. Flame. 2014. V. 161. P. 2933-2950.
Peters N. Multiscale combustion and turbulence // Proceedings of the Combustion Institute. 2009. V. 32. P. 1-25.
Матвиенко О.В. Математическое моделирование теплообмена и условий воспламенения турбулентного потока реагирующего газа // Инженерно-физический журнал. 2016. Т. 89. № 1. С. 203-211.
Loboda E.L., Matvienko O.V., Vavilov V.P., Reyno V.V. Infrared thermographic evaluation of flame turbulence scale // Infrared Physics & Technology. 2015. V. 72. P. 1-7.
Piquet J. Turbulent Flows: Models and Physics. Berlin: Springer, 1999.
Егоров А.Г., Тизилов А.С., Ниязов В.Я., Архипов В.А., Матвиенко О.В. Исследование влияния закрутки спутного высокоскоростного потока воздуха на геометрические параметры алюминиево-воздушного факела // Химическая физика. 2014. Т. 33. № 10. С. 58-61.
Hanjalic K., Launder B. E., Schiestel R. Multiple time-scale concept in turbulent transport modeling // In Turbulent Shear Flows II, Springer Verlag. P. 36. 1980.
Abe K., Kondoh T., Nagano Y. A new turbulence model for predicting fluid flow and heat transfer in separating and reattaching flows - I. Flow field calculations // Int. J. of Heat Mass Transfer. 1994. V. 37. No. 1. P. 139-151.
Jones W. P., Launder B.E. The calculation of low Reynolds number phenomena with a two-equation model of turbulence // Int. J. of Heat Mass Transfer. 1973. V. 16. P. 1119-1130.
Матвиенко О.В. Исследование теплообмена и формирования турбулентности во внутреннем закрученном потоке жидкости при низких числах Pейнольдса // Инженерно-физический журнал. 2014. Т. 87. № 4. С. 908-918.
Oran E.S., Boris J.P. Numerical Simulation of Reactive Flow // Elservier Science Publishing Co. Inc., New York. 1987. P. 14.
Ушаков В.М., Матвиенко О.В. Численное исследование теплообмена и зажигания реак-ционноспособных стенок канала высокотемпературным потоком закрученного газа // Инженерно-физический журнал. 2005. Т. 78. № 3. С. 123-128.
Westbrook C.K., Dryer F.L. Chemical Kinetic Modeling of Hydrocarbon Combustion // Prog. Energy Combust. Sci. 1984. V. 10. 1-57.
Bray K. N. C., Champion M., Libby P. A. Swaminathan N. Finite rate chemistry and presumed PDF models for premixed turbulent combustion // Combust. Flame. 2006. V. 146. No. 4. P. 665-673.
Spalding D.B. Mathematical Models of Turbulent Flames; A Review // Combust. Sci. Technol. 1976. V. 13. No. 1-6. P. 3-25.
Гришин А.М., Матвиенко О.В., Руди Ю.А. Математическое моделирование горения газа в закрученной струе и формирования огненного смерча // Инженерно-физический журнал. 2009. Т. 82. № 5. С. 902-908.
Ferziger J.H., PericM. Computational Methods for Fluid Dynamics. Berlin: Springer, 1996.
Warnatz J., Maas U., Dibble R.W. Combustion. Berlin: Springer, 1999.
Van Doormal J.P., Raithby G.D. Enhancements of the SIMPLE method for predicting incompressible fluid flows // Numer. Heat Transfer. 1984. V. 7. P. 147-163.
Лобода Е.Л., Рейно В.В., Агафонцев М.В. Выбор спектрального интервала для измерения полей температуры в пламени и регистрации экранированных пламенем высокотемпературных объектов с применением методов ИК-диагностики// Известия высших учебных заведений. Физика. 2015. Т. 58. № 2. C. 124-128.
Loboda E.L., Reyno V.V., Vavilov V.P. The Use of Infrared Thermography to Study the Optical Characteristics of Flames from Burning Vegetation // Infrared Physics and Technology. 2014. V. 67. P. 566-573.
 Evaluation of the turbulence scale in a flame at the diffusion combustion of diesel fuel | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2016. № 4(42).

Evaluation of the turbulence scale in a flame at the diffusion combustion of diesel fuel | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2016. № 4(42).

Download full-text version
Counter downloads: 850