On the solution of the nonstationary Schrodinger equation | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2016. № 5(43). DOI: 10.17223/19988621/43/3

On the solution of the nonstationary Schrodinger equation

The Schrodinger equation describes quantum mechanics processes occurring when particles pass through a potential barrier. In this problem, it is necessary to find the probability density of particles and to track its evolution in time. In this paper, it is shown that time-dependent Schrodinger's equation has a direct analogy to the heat conductivity equation, differing from it in the imaginary time. As a numerical method of the decision, it is offered to apply the method of matrix exponential function in which a finite difference analogue of the one-dimensional Laplacian is considered as a matrix operating on a vector. This way of the solution allows one to consider potential barriers of any form in the Schrodinger equation. Time is included now into the decision as a parameter, and it allows one to get rid of the necessity of time quantization and to do it only on a spatial variable. In this aspect, this way favorably differs from traditional ways of solving evolutionary equations which use quantization both on time and on a spatial variable. Results of numerical experiments show that the greatest amplitudes of probability are localized in the field of minima of potential barriers.

Download file
Counter downloads: 248

Keywords

potential barriers, heat conductivity equation, matrix exhibitor, Schrodinger equation, probability amplitude, потенциальные барьеры, уравнение теплопроводности, матричная экспонента, уравнение Шредингера, амплитуда вероятности

Authors

NameOrganizationE-mail
Mishcharina Elena YuryevnaTomsk State Universitysweetyhemp@gmail.com
Libin Eduard EfimovichTomsk State University
Bubenchikov MikhailAlekseevichGazprom Transgaz Tomsk Ltd; Tomsk Stste Universitym.bubenchikov@gtt.gazprom.ru
Всего: 3

References

Feshbach H., Morse Ph.M. Methods of Theoretical Physics. Part II. New York: McGraw-Hill, 1953. 997 p.
Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. М.: Наука, 1969. Т. III: Квантовая механика. Нерелятивистская теория. 767 с.
Терновых Е.Ю. Применение матричных разностных операторов для решения уравнения теплопроводности // Актуальные проблемы современной механики сплошных сред. Всероссийская молодежная научная конференция. Томск, 16-19 октября 2010 г. Тез. докл. Томск: Изд-во Том. ун-та, 2010. С. 209-211.
 On the solution of the nonstationary Schrodinger equation | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2016. № 5(43). DOI: 10.17223/19988621/43/3

On the solution of the nonstationary Schrodinger equation | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2016. № 5(43). DOI: 10.17223/19988621/43/3

Download full-text version
Counter downloads: 734