Numerical investigation of a viscous fluid flow through the gap between two parallel plates | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2016. № 5(43). DOI: 10.17223/19988621/43/7

Numerical investigation of a viscous fluid flow through the gap between two parallel plates

The process of unsteady flow of a viscous incompressible fluid through the gap between two parallel plates is considered. To describe the process, a one-dimensional model of the plane-parallel flow of a viscous fluid is proposed. Within the framework of this model, the problem with nonlocal additional condition for obtaining the pressure drop versus the time for a given volumetric flow rate of the fluid through the gap is posed. This problem belongs to the class of inverse problems associated with the reconstruction of right-hand sides of parabolic equations as functions of time. Using the time sampling, the posed problem is converted to a semidiscrete problem. In order to solve this problem, a special formulation is suggested. As a result, the solution of the original problem at each time step is reduced to solving two boundary value problems with local boundary conditions and the linear equation with respect to the approximate value of the pressure drop.

Download file
Counter downloads: 242

Keywords

перепад давления по длине зазоре, нелокальное условие, расход жидкости через зазор, течение жидкости в зазоре, обратная задача, fluid flow through the gap, fluid flow rate through the gap, nonlocal condition, pressure drop along the gap length, inverse problem

Authors

NameOrganizationE-mail
Gamzaev Khanlar Mekhvali oglyAzerbaijan State University of Oil and Industryxan.h@rambler.ru
Gadimov Ilgar Kamil oglyAzerbaijan State University of Oil and Industryqadimovilqar@gmail.com
Всего: 2

References

Гамзаев Х.М. О численном моделировании движения жидкости в двухпластовой системе // Вестник Томского государственного университета. Математика и Механика. 2015. № 3(35). С. 52-59.
Самарский А.А., Вабищевич П.Н. Численные методы решения обратных задач математической физики. М.: Издательство ЛКИ, 2009.
Лойцанский Л.Г. Механика жидкости и газа: учеб. для вузов. 7-е изд., испр. М.: Дрофа, 2003. 840 с.
Алифанов О.М., Артюхин Е.А., Румянцев С.В. Экстремальные методы решения некорректных задач. М.: Наука, 1988.
Mott R.L. Applied Fluid Mechanics. 6th еd. Prentice Hall, 2005. 640 p.
Esposito A. Fluid Power with Applications. 7th ed. Prentice Hall, 2008. 672 p.
Лепешкин А.В., Михайлин А.А., Шейпак А.А. Гидравлика и гидропневмопривод. В 2 ч. Ч. 2. Гидравлические машины и гидропневмопривод: учеб. для вузов. 4-е изд., пер. и доп. / под ред. А.А. Шейпака. М.: МГИУ, 2009. 352 с.
Шейпак А.А. Гидравлика и гидропневмопривод: учеб. пособие. Ч. 1. Основы механики жидкости и газа. Изд. 2-е, пер. и доп. М.: Изд-во МГИУ, 2003. 192 с.
Башта Т.М. Гидравлика, гидравлические машины и гидравлические приводы. М.: Машиностроение, 1970. 502 с.
 Numerical investigation of a viscous fluid flow through the gap between two parallel plates | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2016. № 5(43). DOI: 10.17223/19988621/43/7

Numerical investigation of a viscous fluid flow through the gap between two parallel plates | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2016. № 5(43). DOI: 10.17223/19988621/43/7

Download full-text version
Counter downloads: 734