Numerical investigation of a two-phase flow of fluid with light particles in open channels | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2016. № 6(44). DOI: 10.17223/19988621/44/8

Numerical investigation of a two-phase flow of fluid with light particles in open channels

A mathematical model and a computational method for a numerical investigation of the two-phase turbulent flow in an open channel are performed. The solid particles with a density close to that of water were considered as a dispersed phase. The model is based on the flow depth-averaged equations of mechanics of interacting and interpenetrating continuums in a hydrostatic approach. A turbulent closure of the model is implemented with the application of the k -е turbulence model modified by Pourahmadi and Humphrey (1983) to consider the influence of particles on the turbulent structure of the flow. The numerical method proposed for solving equations of the model is based on the elimination algorithm and explicit-implicit time approximation. An unsteady turbulent flow in a 180-degree bend flume with polypropylene particles modeling the ice was computed and the results were compared with those of Urroz and Ettema (1992). It was found that the mathematical model and the computational method proposed predict accurately both the velocity field and distribution of the particles in the channel. The influence of the dynamic parameters of dispersed phase on the turbulent structure of the flow was investigated by conducting the calculations of the flow in an open channel with a 90-degree bend. It was revealed that the structure of a two-phase flow is most affected by the size and shape of the particles.

Download file
Counter downloads: 335

Keywords

математическое моделирование, двухфазное течение, двухскоростной континуум, приближение мелкой воды, k-е-модель турбулентности, ледяные частицы, метод конечного объема, mathematical modeling, two-phase flow, double-speed continuum, shallow water approximation, k -е turbulence model, ice particles, finite volume method

Authors

NameOrganizationE-mail
Churuksaeva Vladislava V.Tomsk State Universitychu.vv@mail.ru
Starchenko Alexander V.Tomsk State Universitystarch@math.tsu.ru
Всего: 2

References

Han S.S., Ramamurthy A.S., and Biron P.M. Characteristics of Flow around Open Channel 90° Bends with Vanes // Journal of Irrigation and Drainage Engineering. 2011. V. 137. No. 10. P. 668-676. DOI: 10.1061/(ASCE)IR.1943-4774.0000337.
Tsai W.F., Ettema R. Ice cover influence on transverse bed slopes in a curved alluvial channel // J. Hydraulic Research. 1994. V. 32. No. 4. P. 561-581. DOI: 10.1080/00221686. 1994.9728355.
Urroz G.E., Ettema R. Bend ice jams: laboratory observations // Canadian Journal of Civil Engineering. 1992. V. 19. P. 855-864. DOI: 10.1139/192-097.
Cea L., Puertas J., and Vazquez-Cendon M.E. Depth averaged modelling of turbulent shallow water flow with wet-dry fronts // Archives of computational methods in engineering. September 2007. V. 14. No. 3. P. 303-341. DOI: 10.1007/s11831-007-9009-3.
Hou J., Simons F., Mahgoub M., and Hinkelmann R. A robust well-balanced model on unstructured grids for shallow water flows with wetting and drying over complex topography // Computer methods in applied mechanics and engineering. 2013. No. 257. P. 126-149. DOI: 10.1016/j.cma.2013.01.015.
van Leer B. Towards the Ultimate Conservative Difference Scheme, V. A Second Order Sequel to Godunov's Method // Journal of Computational Physics. 1979. No. 32. P. 101-136. DOI: 10.1016/0021-9991(79)90145-1.
Cada M., Torrilhon M. Compact third-order limiter functions for finite volume methods // J. Computational Physics. 2009. V. 228. P. 4118-4145. DOI: 10.1016/j.jcp.2009. 02.020.
Gidaspov D. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions. Boston: Academic Press, 1994. 457 p.
Патанкар С. Численные методы решения задач теплообмена и динамики жидкости. М.: Энергоатомиздат, 1984.
Роди В. Модели турбулентности окружающей среды // Методы расчета турбулентных течений. М.: Мир, 1984. С. 276-278.
Launder B.E., Spalding D.B. The numerical computation of turbulent flows // Computer Methods in Applied Mechanics and Engineering. 1974. V. 2. No. 3. P. 269-289. DOI: 10.1016/0045-7825(74)90029-2.
Чуруксаева В.В., Старченко А.В. Математическая модель и численный метод для расчета турбулентного течения в русле реки // Вестн. Том. гос. ун-та. Математика и механика. 2015. № 6(38). С. 100-114. DOI: 10.17223/19988621/38/12.
Нигматулин Р.И. Динамика многофазных сред. Ч.1. Москва: Наука, 1987. 464 с.
Бубенчиков А.М., Старченко А.В. Численные модели динамики и горения аэродисперсных смесей в каналах. Томск: Изд-во Том. ун-та, 1998. 236 с.
 Numerical investigation of a two-phase flow of fluid with light particles in open channels | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2016. № 6(44). DOI: 10.17223/19988621/44/8

Numerical investigation of a two-phase flow of fluid with light particles in open channels | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2016. № 6(44). DOI: 10.17223/19988621/44/8

Download full-text version
Counter downloads: 650