Thermal conductivity of the bubble gas-liquid media with a high concentration | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2017. № 45. DOI: 10.17223/19988621/45/6

Thermal conductivity of the bubble gas-liquid media with a high concentration

It is known that Maxwell's equation (the Clausius-Mossotti formula) is widely used for calculating the electrical and thermal conductivity, dielectric constant, and other effective transport coefficients of disperse media. This formula does not take into account the interaction of particles with each other; therefore, it is believed to be valid only for a low volume concentration of the dispersed particles. The analytical dependence for calculating the thermal conductivity of an incompressible bubble medium, with taking into account the mutual influence of the bubbles, has been obtained theoretically by the author. A comparison of the results with the calculations and experimental data of other authors has shown that Maxwell's formula, which leaves out of account the interaction of bubbles, leads to an error of less than 5% in the range of bubble concentration (by volume) from 0 to 0.55. The allowance for interaction of the bubbles almost does not improve the results of Maxwell's formula. This fact testifies that the main contribution to a change in the thermal conductivity with an increase in concentration of bubbles in the bubble medium is made by a purely geometric factor.

Download file
Counter downloads: 228

Keywords

пузырьковые газожидкостные среды, гидродинамическое взаимодействие, теплопроводность, электропроводность, диэлектрическая и магнитная проницаемости, bubble gas-liquid medium, hydrodynamic interaction, thermal conductivity, electrical conductivity, permittivity and magnetic permeability

Authors

NameOrganizationE-mail
Boshenyatov Boris VladimirovichInstitute of Applied Mechanics of the Russian Academy of Sciencesbosbosh@mail.ru
Всего: 1

References

Бошенятов Б.В. О перспективах применения микропузырьковых газожидкостных сред в технологических процессах // Изв. вузов. Физика. 2005. № 11. Приложение. С. 49-54.
Бошенятов Б.В. Микропузырьковые газожидкостные среды и перспективы их использования. Издательский дом: LAP LAMBERT Academic Publishing, 2016. 170 c.
Maxwell J.C. Electricity and magnetism (1st ed.). Clarendon Press, 1873.
Einstein A. Eineneue Bestimung der Molekuldimensionen // Ann. Phys. 1906. V. 19. Р. 289-306.
Lord Rayleigh. On the influence of obstacles arranged in rectangular order upon the volume properties of a medium // Phil. Mag. 1892. V. 34. Р. 481-502.
Jeffrey D.J. Conduction through a random suspension of spheres // Proc. Roy. Soc. London. 1973. V. A335. Р. 355-367.
Felderhof B.V., Ford G.W., Cohen E.G.D. Two-particle cluster integral in the expansion of the dielectric constant // J. Stat. Phys. 1982. V. 28. Р. 649-672.
Gchoki B., Felderhof B.U. // Journal of Statistical Physics. 1988. V. 53. No. 1/2. P. 499-521.
Markov K.Z. On the Heat Propagation Problem for Random Dispersions of Spheres // Mathematica Balkanica New Series. 1989. V. 3. Fasc. 3-4. Р. 399-417
Buryachenko V.A. Micromechanics of Heterogeneous Materials. New York: Springer Science + Business Media. LLC, 2007. 686 p.
Felderhof B.U. Virtual mass and drag in two-phase flow // J. Fluid Mech. 1991. V. 225. Р. 177-196.
Гуськов О.Б., Бошенятов Б.В. Гидродинамическое взаимодействие сферических частиц в потоке невязкой жидкости // Докл. РАН. 2011. Т. 438. № 5. С. 626-628.
Гуськов О.Б., Бошенятов Б.В. Взаимодействие фаз и присоединенная масса дисперсных частиц в потенциальных потоках жидкости // Вестник Нижегородского университета им. Н.И. Лобачевского. Механика жидкости и газа. 2011. Вып. 4(3). С. 740-741.
Clausius R. Die mechanische Behandlung der Elektricitat. Vieweg, Braunshweig, 1879.
Lorenz L. Uber die Refraktions konstante // Ann. Phys. Chem. 1880. V. 11. Р. 70ff.
Ландау Л.Д., Лифшиц Е.М. Электродинамика сплошных сред. Теоретическая физика. Т. 8. М.: Наука, 1982. 620 с.
Ландау Л.Д., Лифшиц Е.М. Теоретическая физика: учеб. пособие в 10 т.: Т. 6. Гидродинамика. М.: Наука, 1986. 736 с.
Feitosa K., Marze S., Saint-Jalmes A., Durian D.J. // J. Physics: Condenced Matter. 2005. V. 17. Р. 6301-6305.
 Thermal conductivity of the bubble gas-liquid media with a high concentration | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2017. № 45. DOI: 10.17223/19988621/45/6

Thermal conductivity of the bubble gas-liquid media with a high concentration | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2017. № 45. DOI: 10.17223/19988621/45/6

Download full-text version
Counter downloads: 590