On small variation formulas | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2017. № 49. DOI: 10.17223/19988621/49/1

On small variation formulas

One of the main methods for solving extremal problems is the variational method. Variational formulas are the main tool of the variational method. Some variational formulas, the so-called small variational formulas, were obtained by means of a family of mappings from the unit disk onto domains lying in the unit disk. There is a theorem in the paper that gives a rather general approach to obtaining small variational formulas.

Download file
Counter downloads: 247

Keywords

голоморфное однолистное отображение, вариационная формула, параметры в интеграле Кристоффеля - Шварца, метод Куфарева, holomorphic univalent mapping, variational formula, parameters in the Christoffel-Schwarz integral, Kufarev method

Authors

NameOrganizationE-mail
Borisova Yana VladimirovnaTomsk State Universityborisova_yana@list.ru
Kolesnikov Ivan AlexandrovichTomsk State Universityia.kolesnikov@mail.ru
Kopanev Sergey AnatolievichTomsk State Universitycopanev_d@mail.ru
Всего: 3

References

Геометрическая теория функции комплексного переменного. 2-е изд. / под ред. В.И. Смирнова. М.: Наука. 1966. 630 с.
Александров И.А. Методы геометрической теории аналитических функций. Томск: Изд-во Том. ун-та, 2001. 219 с.
Труды П.П. Куфарева: к 100летию со дня рождения / под общ. ред. И.А. Александрова. Томск: Изд-во НТЛ, 2009. 371 с.
Александров И.А. Параметрические продолжения в теории однолистных функций. М.: Наука, 1976. 344 с.
Schiffer M. On the coefficient problem for univalent functions // Trans. Amer. Math. Soc. 1968. V. 134. No. 1. P. 95-101.
 On small variation formulas | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2017. № 49. DOI: 10.17223/19988621/49/1

On small variation formulas | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2017. № 49. DOI: 10.17223/19988621/49/1

Download full-text version
Counter downloads: 609