Estimating parameters in a regression model with dependent noises | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2017. № 49. DOI: 10.17223/19988621/49/4

Estimating parameters in a regression model with dependent noises

Let on the probability space (Q, F,P) the observations be described by the equation Y = 0 +v|, (1) where 0e© c Md is a vector of unknown parameters, v is a known positive number, | is the vector of first d values of the AR(p)/ARCH(q) process which satisfies the equation It = в0 + £ PaIi-1 + >0 + £ ajlj-1 St. (2) i=1 V j=1 We suppose that the noise | has a conditionally Gaussian distribution with respect to some a-algebra f with a zero mean and the conditional covariance matrix D(f) such that trDf) -^(Df)) >K(d ) >0 and EXmax(Df)) O,'. Let |0 be a random variable with a zero mean and variance s . The matrix Df) may depend on v,Pi, a j, s2. The coefficients a0,..., ak are assumed to be nonnegative. The noise (st) >0 in (2) is a sequence of i.i.d. random variables with a finite mean and constant variance ст2 [13]. The nuisance parameters (p.)i< , (a j )j£q , and s2 of the noise are unknown. The problem is to estimate the vector of unknown parameters 0 = (01,..., 0d) in the model (1) by observations Y. It is known that, in the class of linear unbiased estimators, the best one is the least-squares estimator (LSE) 0 = Y . (3) However, for example, in the case of pulse-type disturbances, such an estimate may have a low accuracy. In [8-12], special modifications of this estimate were developed for discrete and continuous models with dependent conditionally Gaussian noises. Following this approach, this paper proposes the following shrinkage procedure for estimating the parameter 0: 0* =('- n>; (4) where с = v2K(d)Sd, 5d-(p + fiV^^Ц21) • P = sup{101}. The main result of this paper is the following theorem.

Download file
Counter downloads: 205

Keywords

регрессия, улучшенное оценивание, среднеквадратиче-ский риск, условно-гауссовский шум, процесс типа AR/ARCH, regression, improved estimation, mean square risk, conditionally Gaussian noise, AR/ARCH process

Authors

NameOrganizationE-mail
Povzun Mariya AnatolyevnaTomsk State Universitypovzunyasha@gmail.com
Pchelintsev Evgeniy AnatolyevichTomsk State Universityevgen-pch@yandex.ru
Всего: 2

References

Ибрагимов И.А.,Хасьминский Р.З. Асимптотическая теория оценивания. М.: Наука, 1979.
Ширяев А.Н. Основы стохастической финансовой математики. Т. 1. Факты. Модели. М.: ФАЗИС, 1998. 512 с.
FourdrinierD. Statistique inferentielle. Paris: Dunod, 2002. P. 336.
James W., Stein C. Estimation with quadratic loss // Proc. Fourth Berkeley Symposium on Mathematics Statistics and Probability, University of California Press, Berkeley. 1961. V. 1. P. 361-380.
Berger J.O., Haff L.R. A class of minimax estimators of a normal mean vector for arbitrary quadratic loss and unknown covariance matrix // Statist. Decisions. 1983. No. 1. P. 105-129.
Efron B., Morris C. Families of minimax estimators of the mean of a multivariate normal distribution // Ann. Statist. 1976. No. 4. P. 11-21.
Gleser L.J. Minimax estimators of a normal mean vector for arbitrary quadratic loss and unknown covariance matrix // Ann. Statist. 1986. V. 14. No. 4. P. 1625-1633.
Stein C. Estimation of the mean of a multivariate normal distribution // Ann. Statist. 1981. V. 9(6). P. 1135-1151.
Fourdrinier D., Strawderman W.E., William E. A unified and generalized set of shrinkage bounds on minimax Stein estimates // J. Multivariate Anal. 2008. V. 99. P. 2221-2233.
Пчелинцев Е.А. Процедура Джеймса - Стейна для условно-гауссовской регрессии // Вестник Томского государственного университета. Математика и механика. 2011. № 4(16). C. 6-17. Поведение эмпирических среднеквадратических рисков оценок при изменении параметра d при Р1 = 0.7; a1 = 0.2; s2 = 1; ст2 = 1.5; v = 2
Конев В.В., Пчелинцев Е.А. Оценивание параметрической регрессии с импульсными шумами по дискретным наблюдениям // Вестник Томского государственного университета. Математика и механика. 2012. № 1(17). C. 20-35.
Конев В.В., Пергаменщиков С.М., Пчелинцев Е.А. Оценивание параметрической регрессии с импульсными шумами по дискретным наблюдениям // Теория вероятностей и ее применения. 2013. Т. 58. № 3. C. 454-471.
Pchelintsev E. Improved estimation in a non-Gaussian parametric regression // Statistical Inference for Stochastic Processes. 2013. V. 1. P. 16-28.
Пчелинцев Е.А., Пчелинцев В.А. Минимаксное оценивание гауссовской параметрической регрессии // Вестник Томского государственного университета. Математика и механика. 2014. № 5(31). C. 40-47.
 Estimating parameters in a regression model with dependent noises | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2017. № 49. DOI: 10.17223/19988621/49/4

Estimating parameters in a regression model with dependent noises | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2017. № 49. DOI: 10.17223/19988621/49/4

Download full-text version
Counter downloads: 609