On solving plane problems of non-stationary heat conduction by the collocation boundary element method | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2017. № 50. DOI: 10.17223/19988621/50/2

On solving plane problems of non-stationary heat conduction by the collocation boundary element method

In this paper, we propose a fully justified collocation boundary element method allowing one to obtain numerical solutions of internal and external initial-boundary value problems (IBVPs) with boundary conditions of the first, second, and third kind for the equation dtu = a 2A2u - pu with constants a, p > 0 in a plane spatial domain Q (in a bounded one Q+ or in its exterior Q- ) on a finite time interval IT = [0,T] at a zero initial condition. The solutions are found in the form of the double-layer potential for the Dirichlet IBVP and in the form of the simple layer potential for the Neumann-Robin IBVP with unknown density functions determined from the boundary integral equations (BIEs) of the second kind. In this paper, instead of the usual piecewise-polynomial interpolation of the density function on time variable t, the BIEs are approximated by the piecewise-quadratic interpolation (PQI) of the C0 -semigroup of right shifts on time. Also, on the basis of the PQI, the approximation of the multiplier e~pT in kernels of the integral operators is carried out. In addition, the PQI of density functions is performed: for the BIE, only on arc-length s; for the potentials, on both variables s and t. Then, the integration with respect to the variable t on the boundary elements (BEs) is performed exactly. The integration with respect to the variable s on the BE for the potentials is performed approximately by using the Gaussian quadrature with y> 2 points. For the BIE, the integration with respect to the arc-length s is carried out in two ways. On singular BEs and on nearby singular BEs, adjacent to a singular BE in some fixed arc-length region, an exact integration with respect to the variable r is carried out (r is the distance from the boundary point at which the integral is calculated as a function of parameter to the current boundary point of the integration). In this integration, functions of the variable r are taken as the weighting functions. The functions of r are generated by the fundamental solution of the heat equation and the rest of the integrand is approximated by quadratic interpolation on r. The integrals with respect to s on the remaining BEs are calculated using the Gaussian quadrature with у points. The cubic convergence of approximate solutions of the IBVP at any point of the set QxIT is proved under conditions dQ e C5 n C 2y and w e C^dQ). It is also proved that such solutions are resistant to perturbations of the boundary function w in the norm of the space Cj0 (dQ). Here, Ck m„ (dQ) = Ck m (dQ) n C°m+n (dQ) and Ck m(dQ) is the Banach space of k times continuously differentiable on dQ vector functions with values in Sobolev's space which is the domain of definition of the operator Bm ((Bf ) (t) = f ' (t), f (t = 0) = 0 ). In conclusion, results of the numerical experiments are presented. They confirm the cubic convergence of approximate solutions for all three IBVPs in a circular domain.

Download file
Counter downloads: 246

Keywords

граничное интегральное уравнение, метод граничных элементов, сингулярные граничные элементы, нестационарная теплопроводность, коллокация, оператор, аппроксимация, устойчивость, boundary integral equation, boundary element method, singular boundary elements, non-stationary heat conduction, collocation, operator, approximation, stability

Authors

NameOrganizationE-mail
Ivanov Dmitrii Yu.Moscow State University of Railway Engeneeringivanovdyu@yandex.ru
Всего: 1

References

Бреббия К., Теллес Ж., Вроубел Л. Методы граничных элементов. М.: Мир, 1987. 524 с.
Onishi K. Convergence in the boundary element method for heat equation // Teaching for Robust Understanding of Mathematics. 1981. V. 17. P. 213-225.
Costabel M., Onishi K., Wend land W.L. A boundary element collocation method for the Neumann problem of the heat equation // Inverse and Ill-Posed Problems (H.W. Engl and C.W. Groetsch, ed.). Boston: Academic Press, 1987. P. 369-384.
Hongtao Y. On the convergence of boundary element methods for initial-Neumann problems for the heat equation // Mathematics of Computation. 1999. V. 68. No. 226. P. 547-557.
Hamina M., Saranen J. On the spline collocation method for the single layer heat operator equation // Mathematics of Computation. 1994. V. 62. No. 205. P. 41-64.
Иванов Д.Ю. Решение двумерных краевых задач, соответствующих начально-краевым задачам диффузии на прямом цилиндре // Дифференц. уравнения. 2010. Т. 46. № 8. С. 1094-1103.
Иванов Д.Ю., Дзержинский Р.И. Решение задач Робена для двумерных дифференциально-операторных уравнений, описывающих теплопроводность в прямом цилиндре // Научно-технический вестник Поволжья. 2016. № 1. С. 15-17.
Иванов Д.Ю. Устойчивая разрешимость в пространствах дифференцируемых функций некоторых двумерных интегральных уравнений теплопроводности с операторно-полугрупповым ядром // Вестник Томского государственного университета. Математика и механика. 2015. № 6 (38). С. 33-45.
Березин И.С., Жидков Н.П. Методы вычислений. Т. 1. М.: ГИФМЛ, 1962. 464 с.
Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления. Т. 2. М.: ФИЗМАТЛИТ, 2001. 810 с.
Иванов Д.Ю. Вычисление операторов, разрешающих задачи теплопроводности в прямых цилиндрах, с использованием полугрупповой симметрии // Известия Московского государственного технического университета МАМИ. 2014. Т. 4. № 4(22). С. 26-38.
 On solving plane problems of non-stationary heat conduction by the collocation boundary element method | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2017. № 50. DOI: 10.17223/19988621/50/2

On solving plane problems of non-stationary heat conduction by the collocation boundary element method | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2017. № 50. DOI: 10.17223/19988621/50/2

Download full-text version
Counter downloads: 490