Difference approximation and regularization of the optimal control problem for a parabolic equation with an integral condition
Let a controlled process be described in the region QT = {(x,t): 0 < x < 6,0 < t < Т} by the following boundary-value problem for a linear parabolic equation with an integral boundary condition: iUt _JX ik (xt) fx)+q (x,t)=f( x, t), (x,t )e qt , u(x,0) = 9(x), 0< x<£, du dx (0,t) = 0,0 < t < T, P) ^ d k(£,t) --(£,t) = [H(x)-(x,t)dx + g(t), 0 < t < T, dx J dx where ф@) eW2(0,l), f (x,t) e L2(QT), g(t) <=W2,(0,T),H (x )£W21(0, l) are given functions, k(x,t), q(x, t) - are control functions, and u = u(x,t) = u(x,t,v) - is solution of the boundary value problem, i.e. the process state corresponding to the control о . We introduce the set of admissible controls V = {о = (k(x,t),q(x,t)) e H = W2\Qt) x L2(QT): 0 < v < k(x,t) < p, dk (x, t) dx dk (x, t) dt
2, |q(x,t)|
3a.e. on QT}, where v, p, p1, p2, p3 > 0 - are given numbers. We define the target functional T J (o) = J|u (x,Т;u)- uT (x)2 dx, 0 where uT (x) eW2(0, l) - the given function. In the present work, the optimal control problem for a parabolic equation with an integral boundary condition and control coefficients is considered. Estimates of the accuracy of the difference approximations by state and function are established. The process of A.N. Tikhonov’s regularization of the approximations is carried out.
Keywords
оптимальное управление, параболическое уравнение, интегральное граничное условия, разностная аппроксимацияAuthors
Name | Organization | |
Tagiev Rafig K.O. | Baku State University | r.tagiyev@list.ru |
Gabibov Vaxab M.O. | Lenkaran State University | vahab.hebibov@mail.ru |
References

Difference approximation and regularization of the optimal control problem for a parabolic equation with an integral condition | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2017. № 50. DOI: 10.17223/19988621/50/3