The fourth double-layer potential for a generalized bi-axially symmetric Helmholtz equation | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2017. № 50. DOI: 10.17223/19988621/50/4

The fourth double-layer potential for a generalized bi-axially symmetric Helmholtz equation

Applying a method of complex analysis (based upon analytic functions), R.P. Gilbert in 1969 constructed an integral representation of solutions of the generalized bi-axially symmetric Helmholtz equation. Fundamental solutions of this equation were constructed recently. In fact, when the spectral parameter is zero, fundamental solutions of the generalized bi-axially symmetric Helmholtz equation can be expressed in terms of Appell’s hypergeometric function of two variables of the second kind. All the fundamental solutions of the generalized bi-axially symmetric Helmholtz equation are known, and only for the first one the theory of potential was constructed. In this paper, we aim at constructing a theory of double-layer potentials corresponding to the fourth fundamental solution. Using some properties of Appell’s hypergeometric functions of two variables, we prove limiting theorems and derive integral equations containing double-layer potential densities in the kernel.

Download file
Counter downloads: 314

Keywords

обобщенное двуосесимметрическое уравнение Гельмгольца, формула Грина, фундаментальное решение, четвертый потенциал двойного слоя, гипергеометрические функции Аппеля от двух переменных, интегральные уравнения с плотностью потенциала двойного слоя в ядре, generalized bi-axially symmetric Helmholtz equation, Green’s formula, fundamental solution, fourth double-layer potential, Appell’s hypergeometric functions of two variables, integral equations with double-layer potential density

Authors

NameOrganizationE-mail
Ehrgashev Tuhtasin G.Tashkent Institute of Irrigation and Agricultural Mechanization Engineersertuhtasin@mail.ru
Всего: 1

References

Миранда К. Уравнения с частными производными эллиптического типа. М.: ИЛ, 1957. 256 с.
Гюнтер Н.М. Теория потенциалов и ее применение к основным задачам математической физики. М.: Гостехиздат, 1953. 416 с.
Gilbert R.P. Theoretic Methods in Partial Differential Equations. Mathematics in Science and Engineering. Vol. 54. A Series of Monographs and Textbooks. New York, London: Academic Press, 1969. 308 p.
Hasanov A. Fundamental solutions of generalized bi-axially symmetric Helmholtz equation // Complex variables and Elliptic Equations. 2007. V. 52. P. 673-683.
Appell P., Kampe de Feriet J. Fonctions Hypergeometriques et Hyperspheriques: Polynomes d’Hermite. Paris: Gauthier - Villars, 1926. 440 p.
Бейтмен Г., Эрдейи А. Высшие трансцендентные функции. Т. 1. М.: Наука, 1973. 296 с.
Srivastava H.M., Karlsson P.W. Multipl. Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited, Chicherster), New York, Chichester, Brisbane and Toronto: John Wiley and Sons, 1985. 386 p.
Смирнов М.М. Вырождающиеся эллиптические и гиперболические уравнения. М.: Наука, 1966. 292 с.
Смирнов М.М. Уравнения смешанного типа. М.: Высшая школа, 1985. 304 с.
Srivastava H.M., Hasanov A., Choi J. 2015. Double-Layer Potentials for a Generalized BiAxially Symmetric Helmholtz Equation // Sohag J. Math. 2015. V. 2. No. 1. P. 1-10.
Burchnall J.L., Chaundy T.W. Expansions of Appell’s double hypergeometric functions // Quart. J. Math. Oxford Ser. 1940. V. 11. Р. 249-270.
 The fourth double-layer potential for a generalized bi-axially symmetric Helmholtz equation | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2017. № 50. DOI: 10.17223/19988621/50/4

The fourth double-layer potential for a generalized bi-axially symmetric Helmholtz equation | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2017. № 50. DOI: 10.17223/19988621/50/4

Download full-text version
Counter downloads: 490