Numerical modeling of the interaction between nutrient - phytoplankton - zooplankton - detritus system components during the spring thermal bar | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2017. № 50. DOI: 10.17223/19988621/50/10

Numerical modeling of the interaction between nutrient - phytoplankton - zooplankton - detritus system components during the spring thermal bar

In this paper, a nonhydrostatic 2.5D numerical model for simulating the hydrobiological processes during the spring riverine thermal bar in Kamloops Lake (British Columbia, Canada) is described. A thermal bar is a narrow zone in a lake where the water, which has a maximum density, sinks from the surface to the bottom. Numerical modeling of the dynamics of plankton ecosystems is implemented using the nutrient - phytoplankton - zooplankton - detritus model of Parker (1991). The hydrodynamic model, which takes into account an effect of the Coriolis force, is written in the Boussinesq approximation with the continuity, momentum, energy, and salinity equations. The data obtained in numerical experiments show a good agreement with that of Holland et al. (2003). Simulation results demonstrate that the maximum concentrations of phytoplankton are in the thermoactive (the inshore side of a thermal bar) region of the lake. Calculations under variable temperature conditions of the Thompson River show that the warm river waters facilitate a rapid growth of the phytoplankton and leads to a significant reduction of the nutrient in this area. However, these thermal boundary conditions have a little impact on the changes in zooplankton and detritus biomass.

Download file
Counter downloads: 218

Keywords

численное моделирование, термобар, планктон, нутриент, детрит, озеро Камлупс, plankton, thermal bar, mathematical model, numerical experiment, Kamloops Lake

Authors

NameOrganizationE-mail
Tsydenov Bair O.Tomsk State Universitytsydenov@math.tsu.ru
Всего: 1

References

Блохина Н.С., Показеев К.В. Уникальное природное явление - термобар // Земля и Вселенная. 2015. № 6. С. 78-88.
Mortimer C.H. Lake hydrodynamics // Mitteilugen Int. Ver. Limnol. 1974. No. 20. P. 124-197.
Blokhina N.S., Ordanovich A.E., Savel'eva O.S. Model of Formation and Development of Spring Thermal Bar // Water Resources. 2001. No. 28(2). P. 201-204. DOI: 10.1023/A: 1010339919712
Holland P.R., Kay A., Botte V. A numerical study of the dynamics of the riverine thermal bar in a deep lake // Environmental Fluid Mechanics. 2001. No. 1(3). P. 311-332. DOI: 10.1023/A:1013106526253
Бочаров О.Б., Овчинникова Т.Э. О термогравитационной конвекции в прибрежной зоне глубокого озера в период весеннего прогревания // Вычисл. технологии. 1998. Т. 3. № 4. C. 3-12.
Квон В.И., Квон Д.В. Численный анализ механизма глубокого проникновения поверхностных вод в прибрежной зоне озера в период весенне-летнего термобара // Вычисл. технологии. 1997. Т. 2. № 5. C. 46-56.
Farrow D.E. A numerical model of the hydrodynamics of the thermal bar // J. Fluid Mech. 1995. V. 303. P. 279-295. DOI: 10.1017/S0022112095004277.
Holland P.R., Kay A., Botte V. Numerical modelling of the thermal bar and its ecological consequences in a river-dominated lake // J. Mar. Syst. 2003. No. 43(1-2). P. 61-81. DOI: 10.1016/S0924-7963(03)00089-7
Malm J. Spring circulation associated with the thermal bar in large temperate lakes // Nordic Hydrology. 1995. V. 26. No. 4-5. P. 331-358.
Tsvetova E.A. Effect of the Coriolis force on convection in a deep lake: numerical experiment // J. Appl. Mech. Tech. Phys. 1998. V. 39. No. 4. P. 593-599.
Tsvetova E.A. Mathematical modelling of Lake Baikal hydrodynamics // Hydrobiologia. 1999. No. 407. P. 37-43. DOI: 10.1023/A:1003766220781.
Demchenko N.Yu., Chubarenko I.P. Horizontal exchange across the thermal bar front: laboratory and numerical modeling // Water Quality Res. J. Can. 2012. V. 47. No. 3-4. P. 436-450. DOI: 10.2166/wqrjc.2012.037.
Цветова Е.А. Численное моделирование гидродинамических процессов, ответственных за распространение загрязняющих примесей в глубоком водоёме // Вычисл. технологии. 1997. Т. 2. № 2. C. 102-108.
Parker R.A. Eddy diffusion of phytoplankton and nutrients: Estimating coefficients from simulated and observed vertical distributions // Journal of Plankton Research. 1991. No. 13(4). P. 815-830. DOI: 10.1093/plankt/13.4.815.
Tsydenov B.O., Kay A., Starchenko A.V. Numerical modeling of the spring thermal bar and pollutant transport in a large lake // Ocean Modelling. 2016. No. 104. P. 73-83. DOI: 10.1016/j.ocemod.2016.05.009
Steele J.H. Notes on some theoretical problems in production ecology // Mem. Ist. Ital. Idro-biol. Dr. Marco de Marchi. 1965. No. 18 (SUPPL.). P. 383-398.
John B.E.St., Carmack E.C., Daley R.J., Gray C.B.J, Pharo C.H. The limnology of Kamloops Lake, B.C. Vancouver, 1976. 167 p.
Цыденов Б.О. Численное моделирование эффекта весеннего термобара в глубоком озере: дис.. канд. физ.-мат. наук. Томск. 2013. 145 с.
Цыденов Б.О. Численное исследование распространения примеси в пресном озере на основе распределения мутности воды // Вычислительные технологии. 2017. Т. 22. № S1. С. 113-124.
Цыденов Б.О. Численное воспроизведение гидробиологических процессов в период развития весеннего термобара на основе модели «нутриент - фитопланктон - зоопланктон» // Вестник Томского государственного университета. Математика и механика. 2016. № 3(41). С. 86-97. DOI: 10.17113/19988611/41/9
 Numerical modeling of the interaction between nutrient - phytoplankton - zooplankton - detritus system components during the spring thermal bar | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2017. № 50. DOI: 10.17223/19988621/50/10

Numerical modeling of the interaction between nutrient - phytoplankton - zooplankton - detritus system components during the spring thermal bar | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2017. № 50. DOI: 10.17223/19988621/50/10

Download full-text version
Counter downloads: 489