Around Euler's theorem on sums of divisors | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2018. № 51. DOI: 10.17223/19988621/51/3

Around Euler's theorem on sums of divisors

This work relates to experimental mathematics. Two problems solved by Euler are considered. In the first task, the number of partitions for natural numbers is counted; the solution of the second task gives the recursion regularity connecting the sums of dividers of natural numbers. Euler had no definition of the formal ascending power series and a generating function; nevertheless, using the inductive reasonings, he obtained results which were rigorously proved later by other mathematicians. The paper shows how to solve these problems by means of the apparatus of generating functions and calculations in the Mathematica system. Solving of these tasks, Euler considered two infinite sequences, {an}™=0 : 1, -1, -1, 0, 0, 1, 0, 1, 0, 0, ... and {b 0 : 1, 2, 5, 7, 12, 15, 22, 26, ... However, the author has obtained new results: a "closed ^ nJn=0 } form" for these sequences and a generating function for the sequence {bn}™=0.

Download file
Counter downloads: 217

Keywords

экспериментальная математика, теорема Эйлера о разбиениях, гипотеза Эйлера о суммах делителей, производящие функции, система Mathematica, experimental mathematics, Euler's theorem of partitions, Euler's hypothesis of the sums of dividers, generating functions, Mathematica system

Authors

NameOrganizationE-mail
Zyuz'kov Valentin M.Tomsk State University; Tomsk State University of Control Systems and Radioelectronicsvmz@math.tsu.ru
Всего: 1

References

Пойа Д. Математика и правдоподобные рассуждения. М.: Наука, 1975. 464 с.
Пойа Д. Математическое открытие: Решение задач: основные понятия, изучение и преподавание. 3-е изд. М.: КомКнига, 2010. 448 с.
Лакатос И. Доказательства и опровержения: Как доказываются теоремы. 2-е изд. М.: Изд-во ЛКИ, 2010. 152 с.
Bailey D. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A.K. Peters, 2003.
Borwein J., Bailey D., Girgensohn R. Experimentation in Mathematics. Wellesley, MA: A.K. Peters, 2003. 358 p.
Wolfram S. A New Kind of Science. Champaign, Illinois: Wolfram Media, Inc., 2002. 1197 p. URL: http://www.wolframscience.com/
Wolfram Mathematica. URL: http://www.wolfram.com/mathematica
Зюзьков В.М. Начала компьютерной алгебры: учеб. пособие. Томск: Изд. Дом ТГУ, 2015. URL: http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000509029
Бурбаки Н. Алгебра. Многочлены и поля. Упорядоченные группы. М.: Мир, 1965. 300 с.
Грэхем Р., Кнут Д., Паташник О. Конкретная математика. Основание информатики. 2-е изд., испр. М.: Мир; БИНОМ. Лаборатория знаний, 2006. 703 с.
Ландо С.К. Лекции о производящих функциях. 3-е изд., испр. М.: МЦНМО, 2007. 144 с.
Wolfram MathWorld: http:// mathworld.wolfram.com/q-PochhammerSymbol.html
Эндрюс Г. Теория разбиений. М.: Наука, 1982. 256 с.
 Around Euler's theorem on sums of divisors | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2018. № 51. DOI: 10.17223/19988621/51/3

Around Euler's theorem on sums of divisors | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2018. № 51. DOI: 10.17223/19988621/51/3

Download full-text version
Counter downloads: 618