Investigation of the stationary mode existence in a system of conflict service of non-homogeneous demands | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2018. № 51. DOI: 10.17223/19988621/51/4

Investigation of the stationary mode existence in a system of conflict service of non-homogeneous demands

This paper studies a nonclassical system which controls several independent conflicting flows and provides service for requests of these flows. It is supposed that there is one high-priority input flow and one high-intensity flow. The input flows can be approximated with a nonordinary Poisson flow. The system includes a service device that provides for each flow a service period and a readjusting period for safe switching between conflicting flows. It is also possible to prolong service for the high-intensity flow until a number of waiting requests in a high-priority flow queue reaches a certain threshold. The most meaningful characteristics of the system are stated. A mathematical probabilistic model for the system is constructed in the form of a multidimensional homogeneous controllable Markovian chain. The paper determines necessary conditions for the existence of a stationary mode in the system. A sufficient condition for existence of a stationary mode for the high-priority flow is proved as well. All the found conditions can be easily checked in real systems since they deal only with system parameters such as intensities of the input flows, intensities of service, and time periods of the service device states.

Download file
Counter downloads: 195

Keywords

пороговый приоритет, многомерная управляемая цепь Маркова, стационарное распределение, priority with threshold, multidimensional controllable Markovian chain, stationary distribution

Authors

NameOrganizationE-mail
Rachinskaya Maria A.Lobachevsky State University of Nizhni Novgorodrachinskaya.maria@gmail.com
Fedotkin Michael A.Lobachevsky State University of Nizhni Novgorodfma5@rambler.ru
Всего: 2

References

Lucantoni D. Further transient analysis of the BMAP/G/1 Queue // Communications in Statistics. Stochastic Models. 1998. V. 14. No. 1-2. P. 461-478. DOI: 10.1080/ 15326349808807482.
Леонтьев Н.Д., Ушаков В.Г. Анализ систем обслуживания с входящим потоком авторегрессионного типа // Информатика и ее применения. 2014. Т. 8. № 3. С. 39-44. DOI: 10.14357/19922264140305.
Ushakov A.V., Ushakov V.G. Limiting expectation time distribution for a critical load in a system with relative priority // Moscow University Computational Mathematics and Cybernetics. 2013. V. 37. No. 1. P. 42-48. DOI: 10.3103/S0278641912040073.
Afanasyeva L., Bashtova E., Bulinskaya E. Limit theorems for semi-Markov queues and their applications // Communications in Statistics - Simulation and Computation. 2012. V. 41. No. 6. P. 688-709. DOI: 10.1080/03610918.2012.625255.
Afanasyeva L., Bulinskaya E. Asymptotic analysis of traffic lights performance under heavy traffic assumption // Methodology and Computing in Applied Probability. 2013. V. 15. No. 4. P. 935-950. DOI: 10.1007/s11009-012-9291-x.
Rykov V., Efrosinin D. On optimal control of systems on their life time // Recent Advances in System Reliability. Springer Series in Reliability Engineering. 2012. V. 51. P. 307-319. DOI: 10.1007/978-1-4471-2207-4_22.
Fedotkin M., Rachinskaya M. Parameters Estimator of the Probabilistic Model of Moving Batches Traffic Flow // Distributed Computer and Communication Networks. Ser. Communications in Computer and Information Science. 2014. V. 279. P. 154-168. DOI: 10.1007/9783-319-05209-0.
Федоткин М.А., Рачинская М.А. Имитационная модель циклического управления конфликтными неординарными пуассоновскими потоками // Вестник Волжской государственной академии водного транспорта. 2016. № 47. С. 43-51.
Федоткин М.А., Рачинская М.А. Модель функционирования системы управления и обслуживания потоков разной интенсивности и приоритетности // Вестник Волжской государственной академии водного транспорта. 2016. № 48. С. 62-69.
Феллер В. Введение в теорию вероятностей и ее приложения. Т. I. М.: Мир, 1967.
Канторович Л.В., Крылов В.И. Приближенные методы высшего анализа. Л.: Физматгиз, 1962. 708 с.
 Investigation of the stationary mode existence in a system of conflict service of non-homogeneous demands | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2018. № 51. DOI: 10.17223/19988621/51/4

Investigation of the stationary mode existence in a system of conflict service of non-homogeneous demands | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2018. № 51. DOI: 10.17223/19988621/51/4

Download full-text version
Counter downloads: 618