Calculation of asian options for the Black - Scholes model | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2018. № 51. DOI: 10.17223/19988621/51/5

Calculation of asian options for the Black - Scholes model

The paper deals with one of fundamental problems of financial mathematics, namely, allocation of resources between financial assets to ensure sufficient payments. When constructing mathematical models of the dynamics of financial indicators, various classes of random processes with discrete and continuous time are used. Therefore, the theory of martingales is a natural and useful mathematical tool in financial mathematics and engineering. In this paper, the Black-Scholes model is considered in continuous time with two financial assets Bt = 1, dSt = CTStdWt,S0 > 0.' The representation Theorem 1 of square integrable martingales is studied to calculate coefficients of the martingale representation. These coefficients allow further redistribution of the securities portfolio to obtain the greatest profit. Theorem 1. Let X = (xt, Ft )0<t<T e Mt and W = (Wt ,Ft )0<t<T be a Wiener process with respect to the natural filtration. Assume that a family of a-algebras (Ft )0<t is right continuous. rT 2 Then there exits a stochastic process (a(t,ю),Ft)0<t<T with EJ a (t,w)dt < ю such that for all 0 < t < T, xt = x0 +J a(s, ro)dWs. (1) {x,W)t = Jt a(s, ro)ds. (2) Here, (•, »)t is a mutual quadratic characteristic of processes. The practical result of the research is the solution of the problem of constructing a hedging strategy. The option was used as the main financial instrument. To construct a hedging strategy in the case of the model under consideration, we apply Theorem 1 to the martingale M, = E(fT^t), where fT = ^ J^ S,dt - Kj is the payment function. We found a quadratically integrable process (at )0<t<T adapted with the filtration (Ft )0<t<T such that for all t e[0,T] M, = M 0 + J0 ^ Jo asdWs. The strategy П = (Pt, у t) is calculated by the formulas Pt = Ef +I0asdWs -Y,s,. у, =a(/cts,.

Download file
Counter downloads: 252

Keywords

мартингал, стохастический интеграл, хеджирующая стратегия, азиатский опцион, модель Блэка - Шоулса, martingale, stochastic integral, financial strategy, Wiener process, hedging, option value

Authors

NameOrganizationE-mail
Shishkova Alena A.Tomsk State UniversityShishkova@sibmail.com
Всего: 1

References

Bachelier L. Theorie de la speculation // Ann. Ecole Norm. Sup. 1900. V. 17. P. 21-86 (Reprinted in Coothner, ed., 1967. The Random Character of Stock Market Prices. MIT Press, Cambridge, Mass., p. 17-78).
Black F. The pricing of options and corporate liabilities // J. Political Economy. 1973. No. 8l(3).
Merton R. Theory of rational option pricing // Bell J. Economics and Management Science. 1973. No. 4(l).
Cox J.C., Ross R.A., Rubinstein M. Option pricing: a simplified approach // J. Financial Economics. 1979. V.7 (Sept). P. 229-263.
Cox J.C,Rubinstein M. Options Markets. Englewood Cliffs N.J., Prentice - Hall, 1985. 498 p.
Follmer H. Probabilistic aspects of options. Preprint. Helsinki Univ., 1990, January. 34 p.
Ширяев А.Н., Кабанов Ю.М., Крамков Д.О., Мельников А.В. К теории расчетов опционов Европейского и Американского типов. I. Дискретное время // Теория вероятностей и её применение. 1994. Т. 39. Вып. 1. С. 23-79.
Ширяев А.Н., Кабанов Ю.М., Крамков Д.О., Мельников А.В. К теории расчетов опционов Европейского и Американского типов. II. Непрерывное время // Теория вероятностей и её применение. 1994. Т. 39. Вып. 1. С. 80-129.
Harrison J.M., Kreps D.M. Martingales and arbitrage in multiperiod securities markets // Journal of Economic Theory. 1979. V. 20. P. 381-408.
Harrison J.M., Pliska S.R. Martingales, stochastic integrals and continuous trading // Stoch. Processes Appl. l98l. V. ll. No. 3. P. 215-260.
Karatzas I., Shreve S.E. Brownian Motion and Stochastic Calculus. Springer - Verlag, 1988. 470 p.
Pergamenchtchikov S. Limit theorem for Leland's strategy // The Annals of Appl. Prob. 2003. V. 13. No. 3. P. l099-lll8.
Pergamenchtchikov S., Berdjane B. Optimal consumption and investment for markets with random coefficient // Finance and Stochastic. Springer, 2013. V. 17. P. 419-446.
Липцер Р.Ш., Ширяев А.Н. Статистика случайных процессов. М.: Наука, 1979.
Janvresse E., Pergamenchtchikov S., Raynaud de Fitte P. Mathematiques pour la finance et l'assurance. Rouen: l'Univ. de Rouen, 2008.
 Calculation of asian options for the Black - Scholes model | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2018. № 51. DOI: 10.17223/19988621/51/5

Calculation of asian options for the Black - Scholes model | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2018. № 51. DOI: 10.17223/19988621/51/5

Download full-text version
Counter downloads: 618