Evaluation of effective thermal properties of titanium-based composites
Nowadays, composite materials based on titanium are widely used in producing critical parts for aviation and space technology. High operating loads, together with thermal stresses, restrict the reliability of parts and require creating new materials with suitable properties. Variation in properties can be achieved by adding particles of refractory compounds, such as borides, carbides, and silicides. These additions affect not only mechanical, but also thermal properties of the resulting composite, which are important for operation under extreme conditions. In this work, effective properties of composites based on titanium and reinforced by TiC, Ti5Si3, and TiB2 inclusions were evaluated. The calculations were implemented using Maxwell's homogenization scheme in terms of the contribution tensor of inhomogeneity. The changes in the effective thermal conductivity and effective coefficient of thermal expansion of the composites are analyzed in the case of the increasing volume fraction of inclusions for two computational methods: the Maxwell method and the mixture method. The obtained results are compared with experimental data.
Keywords
эффективные свойства,
композит на основе титана,
теплопроводность,
коэффициент теплового расширения,
тензор вклада,
метод гомогенизации Максвелла,
effective properties,
titanium-based composite,
thermal conductivity,
coefficient of thermal expansion,
contribution tensor,
Maxwell's homogenization schemeAuthors
Anisimova Maria A. | Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences; Tomsk Polytechnic University | anisimova_mawa@mail.ru |
Knyazeva Anna G. | Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences; Tomsk Polytechnic University | anna-knyazeva@mail.ru |
Sevostianov Igor B. | New Mexico State University | igor@nmsu.edu |
Всего: 3
References
Titanium and titanium alloys. Fundamentals and Applications / ed. C. Ley ens, M. Peters. Weinheim: Wiley-VCH Verlag GmbH, 2003. 532 p. ISBN: 3-527-30534-3.
Miller P.D., Holladay J.W. Friction and wear properties of titanium // Wear. 1958. V. 2. Iss. 2. P. 133-140. DOI: 10.1016/0043-1648(58)90428-9.
Rasool G., Mridha S., StackM.M. Mapping wear mechanisms of TiC/Ti composite coatings // Wear. 2015. V. 328-329. P. 498-508. DOI: 10.1016/j.wear.2015.03.022.
Monfared A., Kokabi A.H., Asgari S. Microstructural studies and wear assessments of Ti/TiC surface composite coatings on commercial pure Ti produced by titanium cored wires and TIG process // Materials Chemistry and Physics. 2013. V. 137. Iss. 3. P. 959-966. DOI: 10.1016/j.matchemphys.2012.11.009.
Shufeng Li, Katsuyoshi Kondoh, Hisashi Imai, BiaoChen, Lei Jia, Junko Umeda. Microstruc-tur and mechanical properties of P/M titanium matrix composites reinforced by in-situ synthesized TiC-TiB // MaterialsScience & Engineering A. 2015. V. 628. P. 75-83. DOI: 10.1016/j.msea.2015.01.033.
Nuo Li, Chunxiang Cui, Shuangjin Liu, Shuiqing Liu, Sen Cui and Qian Wang. Microstructure and mechanical properties of Ti6Al4V alloy modified and reinforced by in situ Ti5Si3/Ti composite ribbon inoculants // Metals. 2017. V. 7. P. 267. DOI: 10.3390/met7070267.
Прибытков Г.А., Криницын М.Г., Коржова В.В. Исследование продуктов СВ-синтеза в порошковых смесях титана и углерода, содержащих избыток титана // Перспективные материалы. 2016. № 5. С. 59-68.
Gülsoy H.O., Gunay V., Baykara T. Influence of TiC, TiN and TiC(N) additions on sintering and mechanical properties of injection moulded titanium based metal matrix composites // Powder Metallurgy. V. 58. 2015. Iss. 1. P. 30-35. DOI: 10.1179/1743290114Y.0000000096.
Krinitcyn M.G., Korosteleva E.N., Pribytkov G.A. Structure of Ti - TiC cathodes // Proceedings of 2014 International Conference on Mechanical Engineering, Automation and Control Systems, MEACS 2014 [6986941]. Institute of Electrical and Electronics Engineers Inc., 2014. DOI: 10.1109/MEACS.2014.6986941.
Anisimova M., Knyazeva A., Sevostjyanov I. Effective thermal properties of an aluminum matrix composite with coated diamond inhomogeneities // International Journal of Engineering Science. 2016. V. 106. P. 142-154. DOI: 10.1016/j.ijengsci.2016.05.010.
Ravi Chandran K.S., Panda K.B., Sahay S.S. TiBw-reinforced Ti composites processing, properties, application prospects and research needs // J. Miner. Met. Mater. Soc. 2004. V. 56. P. 42-48.
Frommeyer G., Rosenkranz R. Structures and properties of the refractory silicides Ti5Si3 and TiSi2 and Ti-Si-(Al) eutectic alloys // Metallic Materials with High Structural Efficiency. P. 287-308. DOI: 10.1007/1-4020-2112-7_30.
Зарубин В.С., Кувыркин Г.Н. Оценки упругих свойств композита с анизотропными шаровыми включениями // Наука и Образование: Научное издание. 2014. № 8. С. 237-255. DOI: 10.7463/0814.0720691.
Каракулов В.В., Смолин И.Ю., Скрипняк В.А. Численная методика прогнозирования эффективных механических свойств стохастических композитов при ударно-волновом нагружении с учётом эволюции структуры // Вестник Томского государственного университета. Математика и механика. 2013. № 4(24). С. 70-77.
Советова Ю.В., Сидоренко Ю.Н., Скрипняк В.А. Многоуровневый подход к определению эффективных свойств композита с учетом повреждаемости // Физ. мезомех. 2013. Т. 16. № 5. С. 59-65.
Советова Ю.В., Сидоренко Ю.Н., Скрипняк В.А. Многоуровневый подход к исследованию влияния объемного соотношения компонентов волокнистого однонаправленного углепластика на его механические характеристики // Вестник Томского государственного университета. Математика и механика. 2014. № 2(28). C. 77-89.
Люкшин П.А., Люкшин Б.А., Матолыгина Н.Ю., Панин С.В. Определение эффективных теплофизических характеристик композиционного материала // Физ. мезомех. 2008. Т. 11. № 5. С. 103-110.
Sevostianov I., Kachanov M. Connections between elastic and conductive properties of heterogeneous materials // Advances in Applied Mechanics 42, (E. van der Giessen and H. Aref, Eds.). Academic Press, 2009. P. 69-252.
Levin V.M. On the coefficients of thermal expansion of heterogeneous material // Mechanics of Solids. 1967. No. 2. P. 58-61.
SeVostianov I. and Giraud A. Generalization of Maxwell homogenization scheme for elastic material containing inhomogeneities of diverse shape // Int. J. Engineering Science. 2013. V. 64. P. 23-36. DOI: 10.1016/j.ijengsci.2012.12.004.
MarkovK.Z. Elementary micromechanics of heterogeneous media // Markov K.Z., Preziozi L. (Eds.) Heterogeneous Media: Micromechanics Modeling Methods and Simulations. Boston: Birkhauser, 2000. P. 1-162.
Sevostianov I. On the shape of effective inclusion in the Maxwell homogenization scheme for anisotropic elastic composites // Mechanics of Materials. 2014. V. 75. P. 45-59. DOI: I0.l0l6/j.mechmat.20l4.03.003.
Turner S.P., Taylor R., Gordon F.H., Clyne T.W. Thermal Properties of Ti-SiC- and Ti-TiB2 -Reinforced Composites // Int. J. Thermophysics. V. 17. No. l. 1996. P. 239-252.