Numerical investigation of the effect of liquid filling on free oscillations of one-degree-of-freedom body
In this work, free oscillations of a one-degree-of-freedom solid body containing a rectangular cavity partially filled with a viscous fluid are considered. The horizontal and vertical baffles, as well as vertical screens, were arranged in the cavity. The effect of a fluid flow on the rate of damping of the solid body oscillations at different positions of insertions in the cavity was studied. The cases of both laminar and turbulent flow of the fluid in the cavity were considered. It has been found that the use of the laminar flow model and coarse mesh provides a reasonably accurate description of the motion of a body with a cavity. Moreover, in this case, the computational time is significantly less than that for the turbulent flow model. It has been shown that the oscillation damping rate for a body with a cavity partially filled with a viscous fluid reached the highest value if the cavity contains two vertical screens. Nevertheless, the number of impermeable baffles did not significantly affect the rate of oscillation damping.
Keywords
емкость с жидкостью,
свободные колебания,
волновое движение жидкости,
обтекание решеток,
tank with fluid,
free oscillations,
wave motion of fluid,
flow around screensAuthors
Botalov Andrey Yu. | Tyumen Branch of the Khristianovich Institute of Theoretical and Applied Mechanics SB RAS | aybotalov@bk.ru |
Rodionov Sergey P. | Tyumen Branch of the Khristianovich Institute of Theoretical and Applied Mechanics SB RAS | timms@tmn.ru |
Всего: 2
References
Fujii K., Tamura Y., Sato T., Wakahara T. Wind-induced vibration of tower and practical applications of tuned sloshing damper // J. Wind Eng. Ind. Aerodyn. 1990. V. 33. P. 263-272.
Sun L. M., Fujino Y., Pacheco B. M., Chaiseri P. Modeling of tuned liquid damper // J. Wind Eng. Ind. Aerodyn. 1992. V. 43(1-3). P. 1883-1894.
Tait M.J., El Damatty A.A., Isyumov N., Siddique M.R. Numerical flow models to simulate tuned liquid dampers: fluid modelling (TLD) with slat screen // J. Fluids and Structures. 2005. V. 20(8). P. 1007-1023. DOI: 10.1016/j.jfluidstructs.2005.04004.
Cassolato M.R., Love J.S., Tait M.J. Modeling of a tuned liquid damper with inclined damping screens // Struct. Control Health Monit. 2011. V. 18. P. 674-681. DOI: 10.1002/stc.
Gardarsson S., Yeh H., Reed D. Behavior of sloped-bottom tuned liquid dampers // J. Eng. Mech. 2001. V. 127. P. 266-271.
Kaneko S., Yoshida O. Modeling of deepwater-type rectangular tuned liquid damper with submerged nets // J. Pressure Vessel Technology. 1999. V. 121. P. 413-422.
Frandsen J.B. Numerical predictions of tuned liquid tank structural systems // Journal of Fluids and Structures. 2005. V. 20. P. 309-329. Doi: 10.1016/j.jfluidstructs.2004.10.003.
Maravani M., Hamed M. S. Numerical modeling of sloshing motion in a tuned liquid damper outfitted with a submerged slat screen // Int. J. Numer. Meth. Fluids. 2011. V. 65. P. 834-855. DOI: 10.1002/fld.2216
Hodges B. R., Street R. L. On simulation of turbulent nonlinear free-surface flows // J. Com-put. Phys. 1999. V. 151. P. 425-457.
Кудинов П.И. Метод расчета процессов гидродинамики и теплообмена в неортогональных криволинейных координатах // Вестник Днепропетровского университета. Серия Механика. 1998. Т. 1(1). С. 117-124.
Thompson J. F., Warsi Z.U.A., Mastin Wayne C. Numerical Grid Generation: Foundations and Applications. N.Y.: Elsevier, 1985. 483 p.
Патанкар С. Численные методы решения задач теплообмена и динамики жидкости. М.: Энергоатомиздат, 1984. 152 с.
Wu C.H., Faltinsen O.M., Chen B.F. Numerical study of sloshing liquid in tanks with baffles by time-independent finite difference and fictitious cell method // Computers & Fluids. 2012. V. 63. P. 9-26. DOI: 10.1016/j.compfluid.2012.02.018.
Moukalled F., Mangani L., Darwish M. The finite volume method in computational fluid dynamics: an advanced introduction with OpenFOAM and Matlab. Switzeland: Springer International Publishing, 2015. 791 p.
Hamelin J.A., Love J.S., Tait M.J., Wilson J.C. Tuned liquid dampers with a Keulegan - Carpenter number-dependent screen drag coefficient // Journal of Fluids and Structure. 2013. V. 43. P. 271-286. DOI: 10.1016/j.jfluidstructs.2013.09.006
Keulegan G.H., Carpenter L.H. Forces on cylinders and plates in an oscillating fluid // J. Research of NIST. 1958. V.60. No. 5. P. 423-440.